Huan Huang, Cheng Chen, Bei Rong, Yuan Zhou, Wei Yuan, Yunlong Peng, Zhongchun Liu, Gaohua Wang, Huiling Wang
{"title":"首发精神分裂症患者前扣带回皮层亚区不同的静息态功能连接。","authors":"Huan Huang, Cheng Chen, Bei Rong, Yuan Zhou, Wei Yuan, Yunlong Peng, Zhongchun Liu, Gaohua Wang, Huiling Wang","doi":"10.1007/s11682-024-00863-0","DOIUrl":null,"url":null,"abstract":"<p><p>The anterior cingulate cortex (ACC) is a heterogeneous region of the brain's limbic system that regulates cognitive and emotional processing, and is frequently implicated in schizophrenia. This study aims to characterize resting-state functional connectivity (rsFC) profiles of three subregions of ACC in patients with first-episode schizophrenia and healthy controls. Resting-state functional magnetic resonance imaging (rs-fMRI) scans were collected from 60 first-episode schizophrenia (FES) patients and 60 healthy controls (HC), and the subgenual ACC (sgACC), pregenual ACC (pgACC), and dorsal ACC (dACC) were selected as seed regions from the newest automated anatomical labeling atlas 3 (AAL3). Seed-based rsFC maps for each ACC subregion were generated and compared between the two groups. The results revealed that compared to the HC group, the FES group showed higher rsFC between the pgACC and bilateral lateral orbitofrontal cortex (lOFC), and lower rsFC between the dACC and right posterior OFC (pOFC), the medial prefrontal gyrus (MPFC), and the precuneus cortex (PCu). These findings point to a selective functional dysconnectivity of pgACC and dACC in schizophrenia and provide more accurate information about the functional role of the ACC in this disorder.</p>","PeriodicalId":9192,"journal":{"name":"Brain Imaging and Behavior","volume":" ","pages":"675-685"},"PeriodicalIF":2.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distinct resting-state functional connectivity of the anterior cingulate cortex subregions in first-episode schizophrenia.\",\"authors\":\"Huan Huang, Cheng Chen, Bei Rong, Yuan Zhou, Wei Yuan, Yunlong Peng, Zhongchun Liu, Gaohua Wang, Huiling Wang\",\"doi\":\"10.1007/s11682-024-00863-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The anterior cingulate cortex (ACC) is a heterogeneous region of the brain's limbic system that regulates cognitive and emotional processing, and is frequently implicated in schizophrenia. This study aims to characterize resting-state functional connectivity (rsFC) profiles of three subregions of ACC in patients with first-episode schizophrenia and healthy controls. Resting-state functional magnetic resonance imaging (rs-fMRI) scans were collected from 60 first-episode schizophrenia (FES) patients and 60 healthy controls (HC), and the subgenual ACC (sgACC), pregenual ACC (pgACC), and dorsal ACC (dACC) were selected as seed regions from the newest automated anatomical labeling atlas 3 (AAL3). Seed-based rsFC maps for each ACC subregion were generated and compared between the two groups. The results revealed that compared to the HC group, the FES group showed higher rsFC between the pgACC and bilateral lateral orbitofrontal cortex (lOFC), and lower rsFC between the dACC and right posterior OFC (pOFC), the medial prefrontal gyrus (MPFC), and the precuneus cortex (PCu). These findings point to a selective functional dysconnectivity of pgACC and dACC in schizophrenia and provide more accurate information about the functional role of the ACC in this disorder.</p>\",\"PeriodicalId\":9192,\"journal\":{\"name\":\"Brain Imaging and Behavior\",\"volume\":\" \",\"pages\":\"675-685\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Imaging and Behavior\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11682-024-00863-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Imaging and Behavior","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11682-024-00863-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Distinct resting-state functional connectivity of the anterior cingulate cortex subregions in first-episode schizophrenia.
The anterior cingulate cortex (ACC) is a heterogeneous region of the brain's limbic system that regulates cognitive and emotional processing, and is frequently implicated in schizophrenia. This study aims to characterize resting-state functional connectivity (rsFC) profiles of three subregions of ACC in patients with first-episode schizophrenia and healthy controls. Resting-state functional magnetic resonance imaging (rs-fMRI) scans were collected from 60 first-episode schizophrenia (FES) patients and 60 healthy controls (HC), and the subgenual ACC (sgACC), pregenual ACC (pgACC), and dorsal ACC (dACC) were selected as seed regions from the newest automated anatomical labeling atlas 3 (AAL3). Seed-based rsFC maps for each ACC subregion were generated and compared between the two groups. The results revealed that compared to the HC group, the FES group showed higher rsFC between the pgACC and bilateral lateral orbitofrontal cortex (lOFC), and lower rsFC between the dACC and right posterior OFC (pOFC), the medial prefrontal gyrus (MPFC), and the precuneus cortex (PCu). These findings point to a selective functional dysconnectivity of pgACC and dACC in schizophrenia and provide more accurate information about the functional role of the ACC in this disorder.
期刊介绍:
Brain Imaging and Behavior is a bi-monthly, peer-reviewed journal, that publishes clinically relevant research using neuroimaging approaches to enhance our understanding of disorders of higher brain function. The journal is targeted at clinicians and researchers in fields concerned with human brain-behavior relationships, such as neuropsychology, psychiatry, neurology, neurosurgery, rehabilitation, and cognitive neuroscience.