有限域上的大多数平面曲线都不是阻塞的

IF 0.9 2区 数学 Q2 MATHEMATICS
Shamil Asgarli , Dragos Ghioca , Chi Hoi Yip
{"title":"有限域上的大多数平面曲线都不是阻塞的","authors":"Shamil Asgarli ,&nbsp;Dragos Ghioca ,&nbsp;Chi Hoi Yip","doi":"10.1016/j.jcta.2024.105871","DOIUrl":null,"url":null,"abstract":"<div><p>A plane curve <span><math><mi>C</mi><mo>⊂</mo><msup><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> of degree <em>d</em> is called <em>blocking</em> if every <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-line in the plane meets <em>C</em> at some <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-point. We prove that the proportion of blocking curves among those of degree <em>d</em> is <span><math><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> when <span><math><mi>d</mi><mo>≥</mo><mn>2</mn><mi>q</mi><mo>−</mo><mn>1</mn></math></span> and <span><math><mi>q</mi><mo>→</mo><mo>∞</mo></math></span>. We also show that the same conclusion holds for smooth curves under the somewhat weaker condition <span><math><mi>d</mi><mo>≥</mo><mn>3</mn><mi>p</mi></math></span> and <span><math><mi>d</mi><mo>,</mo><mi>q</mi><mo>→</mo><mo>∞</mo></math></span>. Moreover, the two events in which a random plane curve is smooth and respectively blocking are shown to be asymptotically independent. Extending a classical result on the number of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-roots of random polynomials, we find that the limiting distribution of the number of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-points in the intersection of a random plane curve and a fixed <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-line is Poisson with mean 1. We also present an explicit formula for the proportion of blocking curves involving statistics on the number of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-points contained in a union of <em>k</em> lines for <span><math><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>q</mi><mo>+</mo><mn>1</mn></math></span>.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"204 ","pages":"Article 105871"},"PeriodicalIF":0.9000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Most plane curves over finite fields are not blocking\",\"authors\":\"Shamil Asgarli ,&nbsp;Dragos Ghioca ,&nbsp;Chi Hoi Yip\",\"doi\":\"10.1016/j.jcta.2024.105871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A plane curve <span><math><mi>C</mi><mo>⊂</mo><msup><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> of degree <em>d</em> is called <em>blocking</em> if every <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-line in the plane meets <em>C</em> at some <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-point. We prove that the proportion of blocking curves among those of degree <em>d</em> is <span><math><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> when <span><math><mi>d</mi><mo>≥</mo><mn>2</mn><mi>q</mi><mo>−</mo><mn>1</mn></math></span> and <span><math><mi>q</mi><mo>→</mo><mo>∞</mo></math></span>. We also show that the same conclusion holds for smooth curves under the somewhat weaker condition <span><math><mi>d</mi><mo>≥</mo><mn>3</mn><mi>p</mi></math></span> and <span><math><mi>d</mi><mo>,</mo><mi>q</mi><mo>→</mo><mo>∞</mo></math></span>. Moreover, the two events in which a random plane curve is smooth and respectively blocking are shown to be asymptotically independent. Extending a classical result on the number of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-roots of random polynomials, we find that the limiting distribution of the number of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-points in the intersection of a random plane curve and a fixed <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-line is Poisson with mean 1. We also present an explicit formula for the proportion of blocking curves involving statistics on the number of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-points contained in a union of <em>k</em> lines for <span><math><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>q</mi><mo>+</mo><mn>1</mn></math></span>.</p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"204 \",\"pages\":\"Article 105871\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316524000104\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000104","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果平面中的每条 Fq 线都与 C 交于某个 Fq 点,则阶数为 d 的平面曲线 C⊂P2 称为阻塞曲线。我们证明,当 d≥2q-1 且 q→∞ 时,阻塞曲线在 d 阶曲线中所占比例为 o(1)。我们还证明,在较弱的条件 d≥3p 和 d,q→∞ 下,同样的结论也适用于光滑曲线。此外,随机平面曲线的光滑和阻塞两种情况被证明是渐近独立的。我们扩展了关于随机多项式 Fq 根数的经典结果,发现随机平面曲线与固定 Fq 线交点的 Fq 点数的极限分布是均值为 1 的泊松分布。我们还给出了阻塞曲线比例的明确公式,其中涉及 k=1,2,...q2+q+1 时 k 线结合处所含 Fq 点数的统计量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Most plane curves over finite fields are not blocking

A plane curve CP2 of degree d is called blocking if every Fq-line in the plane meets C at some Fq-point. We prove that the proportion of blocking curves among those of degree d is o(1) when d2q1 and q. We also show that the same conclusion holds for smooth curves under the somewhat weaker condition d3p and d,q. Moreover, the two events in which a random plane curve is smooth and respectively blocking are shown to be asymptotically independent. Extending a classical result on the number of Fq-roots of random polynomials, we find that the limiting distribution of the number of Fq-points in the intersection of a random plane curve and a fixed Fq-line is Poisson with mean 1. We also present an explicit formula for the proportion of blocking curves involving statistics on the number of Fq-points contained in a union of k lines for k=1,2,,q2+q+1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信