正特征反射群的不变微分导数

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
D. Hanson , A.V. Shepler
{"title":"正特征反射群的不变微分导数","authors":"D. Hanson ,&nbsp;A.V. Shepler","doi":"10.1016/j.aam.2024.102671","DOIUrl":null,"url":null,"abstract":"<div><p>Much of the captivating numerology surrounding finite reflection groups stems from Solomon's celebrated 1963 theorem describing invariant differential forms. Invariant differential derivations also exhibit fascinating numerology over the complex numbers linked to rational Catalan combinatorics. We explore the analogous theory over arbitrary fields, in particular, when the characteristic of the underlying field divides the order of the acting reflection group and the conclusion of Solomon's Theorem may fail. Using results of Broer and Chuai, we give a Saito criterion (Jacobian criterion) for finding a basis of differential derivations invariant under a finite group that distinguishes certain cases over fields of characteristic 2. We show that the reflecting hyperplanes lie in a single orbit and demonstrate a duality of exponents and coexponents when the transvection root spaces of a reflection group are maximal. A set of basic derivations are used to construct a basis of invariant differential derivations with a twisted wedging in this case. We obtain explicit bases for the special linear groups <span><math><mtext>SL</mtext><mo>(</mo><mi>n</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> and general linear groups <span><math><mtext>GL</mtext><mo>(</mo><mi>n</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, and all groups in between.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariant differential derivations for reflection groups in positive characteristic\",\"authors\":\"D. Hanson ,&nbsp;A.V. Shepler\",\"doi\":\"10.1016/j.aam.2024.102671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Much of the captivating numerology surrounding finite reflection groups stems from Solomon's celebrated 1963 theorem describing invariant differential forms. Invariant differential derivations also exhibit fascinating numerology over the complex numbers linked to rational Catalan combinatorics. We explore the analogous theory over arbitrary fields, in particular, when the characteristic of the underlying field divides the order of the acting reflection group and the conclusion of Solomon's Theorem may fail. Using results of Broer and Chuai, we give a Saito criterion (Jacobian criterion) for finding a basis of differential derivations invariant under a finite group that distinguishes certain cases over fields of characteristic 2. We show that the reflecting hyperplanes lie in a single orbit and demonstrate a duality of exponents and coexponents when the transvection root spaces of a reflection group are maximal. A set of basic derivations are used to construct a basis of invariant differential derivations with a twisted wedging in this case. We obtain explicit bases for the special linear groups <span><math><mtext>SL</mtext><mo>(</mo><mi>n</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> and general linear groups <span><math><mtext>GL</mtext><mo>(</mo><mi>n</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, and all groups in between.</p></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885824000022\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824000022","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

围绕有限反射群的迷人数字学,大部分源自所罗门 1963 年描述不变微分形式的著名定理。不变微分导数在复数上也表现出与有理加泰罗尼亚组合学相关的迷人数字学。我们探讨了任意域上的类似理论,特别是当底层域的特征除以作用反射群的阶数时,所罗门定理的结论可能会失效。利用布罗尔和蔡的结果,我们给出了一个斋藤判据(雅各布判据),用于寻找在有限群下不变的微分导数基础,该判据区分了特征 2 场的某些情况。我们证明了反射超平面位于单一轨道中,并证明了当反射群的横切根空间为最大时指数和系数的对偶性。在这种情况下,我们使用一组基本导数来构建具有扭曲楔形的不变微分导数基础。我们得到了特殊线性群 SL(n,q) 和一般线性群 GL(n,q) 以及介于两者之间的所有群的显式基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invariant differential derivations for reflection groups in positive characteristic

Much of the captivating numerology surrounding finite reflection groups stems from Solomon's celebrated 1963 theorem describing invariant differential forms. Invariant differential derivations also exhibit fascinating numerology over the complex numbers linked to rational Catalan combinatorics. We explore the analogous theory over arbitrary fields, in particular, when the characteristic of the underlying field divides the order of the acting reflection group and the conclusion of Solomon's Theorem may fail. Using results of Broer and Chuai, we give a Saito criterion (Jacobian criterion) for finding a basis of differential derivations invariant under a finite group that distinguishes certain cases over fields of characteristic 2. We show that the reflecting hyperplanes lie in a single orbit and demonstrate a duality of exponents and coexponents when the transvection root spaces of a reflection group are maximal. A set of basic derivations are used to construct a basis of invariant differential derivations with a twisted wedging in this case. We obtain explicit bases for the special linear groups SL(n,q) and general linear groups GL(n,q), and all groups in between.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信