前肠发酵啮齿动物、反刍动物和灵长类动物胃溶菌酶的功能趋同并不归因于分子进化的趋同。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nick Barts , Roshni H. Bhatt , Chelsea Toner , Wynn K. Meyer , Jacob D. Durrant , Kevin D. Kohl
{"title":"前肠发酵啮齿动物、反刍动物和灵长类动物胃溶菌酶的功能趋同并不归因于分子进化的趋同。","authors":"Nick Barts ,&nbsp;Roshni H. Bhatt ,&nbsp;Chelsea Toner ,&nbsp;Wynn K. Meyer ,&nbsp;Jacob D. Durrant ,&nbsp;Kevin D. Kohl","doi":"10.1016/j.cbpb.2024.110949","DOIUrl":null,"url":null,"abstract":"<div><p>Convergent evolution is a widespread phenomenon. While there are many examples of convergent evolution at the phenotypic scale, convergence at the molecular level has been more difficult to identify. A classic example of convergent evolution across scales is that of the digestive lysozyme found in ruminants and Colobine monkeys. These herbivorous species rely on foregut fermentation, which has evolved to function more optimally under acidic conditions. Here, we explored if rodents with similar dietary strategies and digestive morphologies have convergently evolved a lysozyme with digestive functions. At the phenotypic level, we find that rodents with bilocular stomach morphologies exhibited a lysozyme that maintained higher relative activities at low pH values, similar to the lysozymes of ruminants and Colobine monkeys. Additionally, the lysozyme of <em>Peromyscus leucopus</em> shared a similar predicted protonation state as that observed in previously identified digestive lysozymes. However, we found limited evidence of positive selection acting on the lysozyme gene in foregut-fermenting species and did not identify patterns of convergent molecular evolution in this gene. This study emphasizes that phenotypic convergence need not be the result of convergent genetic modifications, and we encourage further exploration into the mechanisms regulating convergence across biological scales.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional convergence in gastric lysozymes of foregut-fermenting rodents, ruminants, and primates is not attributed to convergent molecular evolution\",\"authors\":\"Nick Barts ,&nbsp;Roshni H. Bhatt ,&nbsp;Chelsea Toner ,&nbsp;Wynn K. Meyer ,&nbsp;Jacob D. Durrant ,&nbsp;Kevin D. Kohl\",\"doi\":\"10.1016/j.cbpb.2024.110949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Convergent evolution is a widespread phenomenon. While there are many examples of convergent evolution at the phenotypic scale, convergence at the molecular level has been more difficult to identify. A classic example of convergent evolution across scales is that of the digestive lysozyme found in ruminants and Colobine monkeys. These herbivorous species rely on foregut fermentation, which has evolved to function more optimally under acidic conditions. Here, we explored if rodents with similar dietary strategies and digestive morphologies have convergently evolved a lysozyme with digestive functions. At the phenotypic level, we find that rodents with bilocular stomach morphologies exhibited a lysozyme that maintained higher relative activities at low pH values, similar to the lysozymes of ruminants and Colobine monkeys. Additionally, the lysozyme of <em>Peromyscus leucopus</em> shared a similar predicted protonation state as that observed in previously identified digestive lysozymes. However, we found limited evidence of positive selection acting on the lysozyme gene in foregut-fermenting species and did not identify patterns of convergent molecular evolution in this gene. This study emphasizes that phenotypic convergence need not be the result of convergent genetic modifications, and we encourage further exploration into the mechanisms regulating convergence across biological scales.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1096495924000162\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096495924000162","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

趋同进化是一种普遍现象。虽然在表型尺度上有许多趋同进化的例子,但分子水平上的趋同进化却较难识别。跨尺度趋同进化的一个典型例子是反刍动物和疣猴体内的消化溶菌酶。这些草食性物种依赖前肠发酵,而前肠发酵在酸性条件下进化得更为理想。在这里,我们探讨了具有相似饮食策略和消化系统形态的啮齿动物是否进化出了具有消化功能的溶菌酶。在表型水平上,我们发现具有双胃形态的啮齿类动物表现出一种溶菌酶,在低pH值条件下保持较高的相对活性,这与反刍动物和疣猴的溶菌酶相似。此外,白猴的溶菌酶与以前发现的消化溶菌酶的质子化状态相似。然而,我们在前肠发酵物种的溶菌酶基因上发现的正选择证据有限,而且没有发现该基因的趋同分子进化模式。这项研究强调,表型趋同不一定是基因修饰趋同的结果,我们鼓励进一步探索跨生物尺度的趋同调控机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Functional convergence in gastric lysozymes of foregut-fermenting rodents, ruminants, and primates is not attributed to convergent molecular evolution

Functional convergence in gastric lysozymes of foregut-fermenting rodents, ruminants, and primates is not attributed to convergent molecular evolution

Convergent evolution is a widespread phenomenon. While there are many examples of convergent evolution at the phenotypic scale, convergence at the molecular level has been more difficult to identify. A classic example of convergent evolution across scales is that of the digestive lysozyme found in ruminants and Colobine monkeys. These herbivorous species rely on foregut fermentation, which has evolved to function more optimally under acidic conditions. Here, we explored if rodents with similar dietary strategies and digestive morphologies have convergently evolved a lysozyme with digestive functions. At the phenotypic level, we find that rodents with bilocular stomach morphologies exhibited a lysozyme that maintained higher relative activities at low pH values, similar to the lysozymes of ruminants and Colobine monkeys. Additionally, the lysozyme of Peromyscus leucopus shared a similar predicted protonation state as that observed in previously identified digestive lysozymes. However, we found limited evidence of positive selection acting on the lysozyme gene in foregut-fermenting species and did not identify patterns of convergent molecular evolution in this gene. This study emphasizes that phenotypic convergence need not be the result of convergent genetic modifications, and we encourage further exploration into the mechanisms regulating convergence across biological scales.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信