Nick Barts , Roshni H. Bhatt , Chelsea Toner , Wynn K. Meyer , Jacob D. Durrant , Kevin D. Kohl
{"title":"前肠发酵啮齿动物、反刍动物和灵长类动物胃溶菌酶的功能趋同并不归因于分子进化的趋同。","authors":"Nick Barts , Roshni H. Bhatt , Chelsea Toner , Wynn K. Meyer , Jacob D. Durrant , Kevin D. Kohl","doi":"10.1016/j.cbpb.2024.110949","DOIUrl":null,"url":null,"abstract":"<div><p>Convergent evolution is a widespread phenomenon. While there are many examples of convergent evolution at the phenotypic scale, convergence at the molecular level has been more difficult to identify. A classic example of convergent evolution across scales is that of the digestive lysozyme found in ruminants and Colobine monkeys. These herbivorous species rely on foregut fermentation, which has evolved to function more optimally under acidic conditions. Here, we explored if rodents with similar dietary strategies and digestive morphologies have convergently evolved a lysozyme with digestive functions. At the phenotypic level, we find that rodents with bilocular stomach morphologies exhibited a lysozyme that maintained higher relative activities at low pH values, similar to the lysozymes of ruminants and Colobine monkeys. Additionally, the lysozyme of <em>Peromyscus leucopus</em> shared a similar predicted protonation state as that observed in previously identified digestive lysozymes. However, we found limited evidence of positive selection acting on the lysozyme gene in foregut-fermenting species and did not identify patterns of convergent molecular evolution in this gene. This study emphasizes that phenotypic convergence need not be the result of convergent genetic modifications, and we encourage further exploration into the mechanisms regulating convergence across biological scales.</p></div>","PeriodicalId":55236,"journal":{"name":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","volume":"271 ","pages":"Article 110949"},"PeriodicalIF":1.9000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional convergence in gastric lysozymes of foregut-fermenting rodents, ruminants, and primates is not attributed to convergent molecular evolution\",\"authors\":\"Nick Barts , Roshni H. Bhatt , Chelsea Toner , Wynn K. Meyer , Jacob D. Durrant , Kevin D. Kohl\",\"doi\":\"10.1016/j.cbpb.2024.110949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Convergent evolution is a widespread phenomenon. While there are many examples of convergent evolution at the phenotypic scale, convergence at the molecular level has been more difficult to identify. A classic example of convergent evolution across scales is that of the digestive lysozyme found in ruminants and Colobine monkeys. These herbivorous species rely on foregut fermentation, which has evolved to function more optimally under acidic conditions. Here, we explored if rodents with similar dietary strategies and digestive morphologies have convergently evolved a lysozyme with digestive functions. At the phenotypic level, we find that rodents with bilocular stomach morphologies exhibited a lysozyme that maintained higher relative activities at low pH values, similar to the lysozymes of ruminants and Colobine monkeys. Additionally, the lysozyme of <em>Peromyscus leucopus</em> shared a similar predicted protonation state as that observed in previously identified digestive lysozymes. However, we found limited evidence of positive selection acting on the lysozyme gene in foregut-fermenting species and did not identify patterns of convergent molecular evolution in this gene. This study emphasizes that phenotypic convergence need not be the result of convergent genetic modifications, and we encourage further exploration into the mechanisms regulating convergence across biological scales.</p></div>\",\"PeriodicalId\":55236,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology\",\"volume\":\"271 \",\"pages\":\"Article 110949\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1096495924000162\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096495924000162","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Functional convergence in gastric lysozymes of foregut-fermenting rodents, ruminants, and primates is not attributed to convergent molecular evolution
Convergent evolution is a widespread phenomenon. While there are many examples of convergent evolution at the phenotypic scale, convergence at the molecular level has been more difficult to identify. A classic example of convergent evolution across scales is that of the digestive lysozyme found in ruminants and Colobine monkeys. These herbivorous species rely on foregut fermentation, which has evolved to function more optimally under acidic conditions. Here, we explored if rodents with similar dietary strategies and digestive morphologies have convergently evolved a lysozyme with digestive functions. At the phenotypic level, we find that rodents with bilocular stomach morphologies exhibited a lysozyme that maintained higher relative activities at low pH values, similar to the lysozymes of ruminants and Colobine monkeys. Additionally, the lysozyme of Peromyscus leucopus shared a similar predicted protonation state as that observed in previously identified digestive lysozymes. However, we found limited evidence of positive selection acting on the lysozyme gene in foregut-fermenting species and did not identify patterns of convergent molecular evolution in this gene. This study emphasizes that phenotypic convergence need not be the result of convergent genetic modifications, and we encourage further exploration into the mechanisms regulating convergence across biological scales.
期刊介绍:
Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology.
Part B: Biochemical and Molecular Biology (CBPB), focuses on biochemical physiology, primarily bioenergetics/energy metabolism, cell biology, cellular stress responses, enzymology, intermediary metabolism, macromolecular structure and function, gene regulation, evolutionary genetics. Most studies focus on biochemical or molecular analyses that have clear ramifications for physiological processes.