Suman Gurung, Nicole K. Restrepo, Surendra Kumar Anand, Vinoth Sittaramane, Saulius Sumanas
{"title":"斑马鱼视网膜神经节细胞和初级运动轴突的发育需要一个新基因 drish。","authors":"Suman Gurung, Nicole K. Restrepo, Surendra Kumar Anand, Vinoth Sittaramane, Saulius Sumanas","doi":"10.1002/dvdy.694","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>During neurogenesis, growing axons must navigate through the complex extracellular environment and make correct synaptic connections for the proper functioning of neural circuits. The mechanisms underlying the formation of functional neural networks are still only partially understood.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Here we analyzed the role of a novel gene <i>si:ch73-364h19.1/drish</i> in the neural and vascular development of zebrafish embryos. We show that <i>drish</i> mRNA is expressed broadly and dynamically in multiple cell types including neural, glial, retinal progenitor and vascular endothelial cells throughout the early stages of embryonic development. To study Drish function during embryogenesis, we generated <i>drish</i> genetic mutant using CRISPR/Cas9 genome editing. <i>drish</i> loss-of-function mutant larvae displayed defects in early retinal ganglion cell, optic nerve and the retinal inner nuclear layer formation, as well as ectopic motor axon branching. In addition, <i>drish</i> mutant adults exhibited deficient retinal outer nuclear layer and showed defective light response and locomotory behavior. However, vascular patterning and blood circulation were not significantly affected.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Together, these data demonstrate important roles of zebrafish <i>drish</i> in the retinal ganglion cell, optic nerve and interneuron development and in spinal motor axon branching.</p>\n </section>\n </div>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":"253 8","pages":"750-770"},"PeriodicalIF":2.0000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Requirement of a novel gene, drish, in the zebrafish retinal ganglion cell and primary motor axon development\",\"authors\":\"Suman Gurung, Nicole K. Restrepo, Surendra Kumar Anand, Vinoth Sittaramane, Saulius Sumanas\",\"doi\":\"10.1002/dvdy.694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>During neurogenesis, growing axons must navigate through the complex extracellular environment and make correct synaptic connections for the proper functioning of neural circuits. The mechanisms underlying the formation of functional neural networks are still only partially understood.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Here we analyzed the role of a novel gene <i>si:ch73-364h19.1/drish</i> in the neural and vascular development of zebrafish embryos. We show that <i>drish</i> mRNA is expressed broadly and dynamically in multiple cell types including neural, glial, retinal progenitor and vascular endothelial cells throughout the early stages of embryonic development. To study Drish function during embryogenesis, we generated <i>drish</i> genetic mutant using CRISPR/Cas9 genome editing. <i>drish</i> loss-of-function mutant larvae displayed defects in early retinal ganglion cell, optic nerve and the retinal inner nuclear layer formation, as well as ectopic motor axon branching. In addition, <i>drish</i> mutant adults exhibited deficient retinal outer nuclear layer and showed defective light response and locomotory behavior. However, vascular patterning and blood circulation were not significantly affected.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>Together, these data demonstrate important roles of zebrafish <i>drish</i> in the retinal ganglion cell, optic nerve and interneuron development and in spinal motor axon branching.</p>\\n </section>\\n </div>\",\"PeriodicalId\":11247,\"journal\":{\"name\":\"Developmental Dynamics\",\"volume\":\"253 8\",\"pages\":\"750-770\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dvdy.694\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Dynamics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dvdy.694","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
Requirement of a novel gene, drish, in the zebrafish retinal ganglion cell and primary motor axon development
Background
During neurogenesis, growing axons must navigate through the complex extracellular environment and make correct synaptic connections for the proper functioning of neural circuits. The mechanisms underlying the formation of functional neural networks are still only partially understood.
Results
Here we analyzed the role of a novel gene si:ch73-364h19.1/drish in the neural and vascular development of zebrafish embryos. We show that drish mRNA is expressed broadly and dynamically in multiple cell types including neural, glial, retinal progenitor and vascular endothelial cells throughout the early stages of embryonic development. To study Drish function during embryogenesis, we generated drish genetic mutant using CRISPR/Cas9 genome editing. drish loss-of-function mutant larvae displayed defects in early retinal ganglion cell, optic nerve and the retinal inner nuclear layer formation, as well as ectopic motor axon branching. In addition, drish mutant adults exhibited deficient retinal outer nuclear layer and showed defective light response and locomotory behavior. However, vascular patterning and blood circulation were not significantly affected.
Conclusions
Together, these data demonstrate important roles of zebrafish drish in the retinal ganglion cell, optic nerve and interneuron development and in spinal motor axon branching.
期刊介绍:
Developmental Dynamics, is an official publication of the American Association for Anatomy. This peer reviewed journal provides an international forum for publishing novel discoveries, using any model system, that advances our understanding of development, morphology, form and function, evolution, disease, stem cells, repair and regeneration.