{"title":"在 Cu-Zr 复合氧化物上以甘油和 CO2 为原料合成碳酸甘油酯","authors":"Huanhuan XU , Yihu KE","doi":"10.1016/S1872-5813(23)60384-1","DOIUrl":null,"url":null,"abstract":"<div><p>A series of Cu<sub>1–<em>x</em></sub>Zr<sub><em>x</em></sub>O<sub>2</sub> bimetallic oxides with different Cu-Zr molar ratios for glycerol carbonate synthesis from glycerol and CO<sub>2</sub> were prepared by hydrothermal method. The results found that the performance was significantly affected by the Zr doping amounts. Under the optimal reaction conditions, the Cu<sub>0.99</sub>Zr<sub>0.01</sub>O<sub>2</sub> catalyst had the best catalytic performance. The conversion of glycerol and the selectivity of glycerol carbonate reached 64.1% and 85.9%, respectively. Cu<sub>1–<em>x</em></sub>Zr<sub><em>x</em></sub>O<sub>2</sub> complex oxide exhibited better activity than pure CuO and pure ZrO<sub>2</sub>. The structures, morphologies and surface properties of the catalysts were characterized by X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), N<sub>2</sub> adsorption and desorption, Temperature programmed reduction (H<sub>2</sub>-TPR), Temperature programmed desorption (TPD) and Fourier Transform Infrared Spectroscopy (FT-IR). It is speculated that the high activity is related to the degree of dispersion of Zr on the surface of CuO, the surface content of oxygen species and the number of acidic-basic sites. In addition, catalytic activity did not change significantly after six cycles, indicating the excellent stability of the catalyst.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 2","pages":"Pages 171-182"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of glycerol carbonate from glycerol and CO2 over Cu-Zr complex oxide\",\"authors\":\"Huanhuan XU , Yihu KE\",\"doi\":\"10.1016/S1872-5813(23)60384-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A series of Cu<sub>1–<em>x</em></sub>Zr<sub><em>x</em></sub>O<sub>2</sub> bimetallic oxides with different Cu-Zr molar ratios for glycerol carbonate synthesis from glycerol and CO<sub>2</sub> were prepared by hydrothermal method. The results found that the performance was significantly affected by the Zr doping amounts. Under the optimal reaction conditions, the Cu<sub>0.99</sub>Zr<sub>0.01</sub>O<sub>2</sub> catalyst had the best catalytic performance. The conversion of glycerol and the selectivity of glycerol carbonate reached 64.1% and 85.9%, respectively. Cu<sub>1–<em>x</em></sub>Zr<sub><em>x</em></sub>O<sub>2</sub> complex oxide exhibited better activity than pure CuO and pure ZrO<sub>2</sub>. The structures, morphologies and surface properties of the catalysts were characterized by X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), N<sub>2</sub> adsorption and desorption, Temperature programmed reduction (H<sub>2</sub>-TPR), Temperature programmed desorption (TPD) and Fourier Transform Infrared Spectroscopy (FT-IR). It is speculated that the high activity is related to the degree of dispersion of Zr on the surface of CuO, the surface content of oxygen species and the number of acidic-basic sites. In addition, catalytic activity did not change significantly after six cycles, indicating the excellent stability of the catalyst.</p></div>\",\"PeriodicalId\":15956,\"journal\":{\"name\":\"燃料化学学报\",\"volume\":\"52 2\",\"pages\":\"Pages 171-182\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"燃料化学学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872581323603841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581323603841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
Synthesis of glycerol carbonate from glycerol and CO2 over Cu-Zr complex oxide
A series of Cu1–xZrxO2 bimetallic oxides with different Cu-Zr molar ratios for glycerol carbonate synthesis from glycerol and CO2 were prepared by hydrothermal method. The results found that the performance was significantly affected by the Zr doping amounts. Under the optimal reaction conditions, the Cu0.99Zr0.01O2 catalyst had the best catalytic performance. The conversion of glycerol and the selectivity of glycerol carbonate reached 64.1% and 85.9%, respectively. Cu1–xZrxO2 complex oxide exhibited better activity than pure CuO and pure ZrO2. The structures, morphologies and surface properties of the catalysts were characterized by X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), N2 adsorption and desorption, Temperature programmed reduction (H2-TPR), Temperature programmed desorption (TPD) and Fourier Transform Infrared Spectroscopy (FT-IR). It is speculated that the high activity is related to the degree of dispersion of Zr on the surface of CuO, the surface content of oxygen species and the number of acidic-basic sites. In addition, catalytic activity did not change significantly after six cycles, indicating the excellent stability of the catalyst.
期刊介绍:
Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.