{"title":"使用基于传感器融合的自适应无香味卡尔曼滤波器进行最佳车辆位置估算","authors":"Giseo Park","doi":"10.1016/j.mechatronics.2024.103144","DOIUrl":null,"url":null,"abstract":"<div><p>Precise position recognition systems are actively used in various automotive technology fields such as autonomous vehicles, intelligent transportation systems, and vehicle driving safety systems. In line with this demand, this paper proposes a new vehicle position estimation algorithm based on sensor fusion between low-cost standalone global positioning system (GPS) and inertial measurement unit (IMU) sensors. In order to estimate accurate vehicle position information using two complementary sensor types, adaptive unscented Kalman filter (AUKF), an optimal state estimation algorithm, is applied to the vehicle kinematic model. Since this AUKF includes an adaptive covariance matrix whose value changes under GPS outage conditions, it has high estimation robustness even if the accuracy of the GPS measurement signal is low. Through comparison of estimation errors with both extended Kalman filter (EKF) and UKF, which are widely used state estimation algorithms, it can be confirmed how improved the estimation performance of the proposed AUKF algorithm in real-vehicle experiments is. The given test course includes roads of various shapes as well as GPS outage sections, so it is suitable for evaluating vehicle position estimation performance.</p></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"99 ","pages":"Article 103144"},"PeriodicalIF":3.1000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal vehicle position estimation using adaptive unscented Kalman filter based on sensor fusion\",\"authors\":\"Giseo Park\",\"doi\":\"10.1016/j.mechatronics.2024.103144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Precise position recognition systems are actively used in various automotive technology fields such as autonomous vehicles, intelligent transportation systems, and vehicle driving safety systems. In line with this demand, this paper proposes a new vehicle position estimation algorithm based on sensor fusion between low-cost standalone global positioning system (GPS) and inertial measurement unit (IMU) sensors. In order to estimate accurate vehicle position information using two complementary sensor types, adaptive unscented Kalman filter (AUKF), an optimal state estimation algorithm, is applied to the vehicle kinematic model. Since this AUKF includes an adaptive covariance matrix whose value changes under GPS outage conditions, it has high estimation robustness even if the accuracy of the GPS measurement signal is low. Through comparison of estimation errors with both extended Kalman filter (EKF) and UKF, which are widely used state estimation algorithms, it can be confirmed how improved the estimation performance of the proposed AUKF algorithm in real-vehicle experiments is. The given test course includes roads of various shapes as well as GPS outage sections, so it is suitable for evaluating vehicle position estimation performance.</p></div>\",\"PeriodicalId\":49842,\"journal\":{\"name\":\"Mechatronics\",\"volume\":\"99 \",\"pages\":\"Article 103144\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957415824000096\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415824000096","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Optimal vehicle position estimation using adaptive unscented Kalman filter based on sensor fusion
Precise position recognition systems are actively used in various automotive technology fields such as autonomous vehicles, intelligent transportation systems, and vehicle driving safety systems. In line with this demand, this paper proposes a new vehicle position estimation algorithm based on sensor fusion between low-cost standalone global positioning system (GPS) and inertial measurement unit (IMU) sensors. In order to estimate accurate vehicle position information using two complementary sensor types, adaptive unscented Kalman filter (AUKF), an optimal state estimation algorithm, is applied to the vehicle kinematic model. Since this AUKF includes an adaptive covariance matrix whose value changes under GPS outage conditions, it has high estimation robustness even if the accuracy of the GPS measurement signal is low. Through comparison of estimation errors with both extended Kalman filter (EKF) and UKF, which are widely used state estimation algorithms, it can be confirmed how improved the estimation performance of the proposed AUKF algorithm in real-vehicle experiments is. The given test course includes roads of various shapes as well as GPS outage sections, so it is suitable for evaluating vehicle position estimation performance.
期刊介绍:
Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.