{"title":"在人群中观察:先平均,后最大。","authors":"Xincheng Lu, Ruijie Jiang, Meng Song, Yiting Wu, Yiran Ge, Nihong Chen","doi":"10.3758/s13423-024-02468-6","DOIUrl":null,"url":null,"abstract":"<p><p>Crowding, a fundamental limit in object recognition, is believed to result from excessive integration of nearby items in peripheral vision. To understand its pooling mechanisms, we measured subjects' internal response distributions in an orientation crowding task. Contrary to the prediction of an averaging model, we observed a pattern suggesting that the perceptual judgement is made based on choosing the largest response across the noise-perturbed items. A model featuring first-stage averaging and second-stage signed-max operation predicts the diverse errors made by human observers under various signal strength levels. These findings suggest that different rules operate to resolve the bottleneck at early and high-level stages of visual processing, implementing a combination of linear and nonlinear pooling strategies.</p>","PeriodicalId":20763,"journal":{"name":"Psychonomic Bulletin & Review","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seeing in crowds: Averaging first, then max.\",\"authors\":\"Xincheng Lu, Ruijie Jiang, Meng Song, Yiting Wu, Yiran Ge, Nihong Chen\",\"doi\":\"10.3758/s13423-024-02468-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Crowding, a fundamental limit in object recognition, is believed to result from excessive integration of nearby items in peripheral vision. To understand its pooling mechanisms, we measured subjects' internal response distributions in an orientation crowding task. Contrary to the prediction of an averaging model, we observed a pattern suggesting that the perceptual judgement is made based on choosing the largest response across the noise-perturbed items. A model featuring first-stage averaging and second-stage signed-max operation predicts the diverse errors made by human observers under various signal strength levels. These findings suggest that different rules operate to resolve the bottleneck at early and high-level stages of visual processing, implementing a combination of linear and nonlinear pooling strategies.</p>\",\"PeriodicalId\":20763,\"journal\":{\"name\":\"Psychonomic Bulletin & Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychonomic Bulletin & Review\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3758/s13423-024-02468-6\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychonomic Bulletin & Review","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13423-024-02468-6","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
Crowding, a fundamental limit in object recognition, is believed to result from excessive integration of nearby items in peripheral vision. To understand its pooling mechanisms, we measured subjects' internal response distributions in an orientation crowding task. Contrary to the prediction of an averaging model, we observed a pattern suggesting that the perceptual judgement is made based on choosing the largest response across the noise-perturbed items. A model featuring first-stage averaging and second-stage signed-max operation predicts the diverse errors made by human observers under various signal strength levels. These findings suggest that different rules operate to resolve the bottleneck at early and high-level stages of visual processing, implementing a combination of linear and nonlinear pooling strategies.
期刊介绍:
The journal provides coverage spanning a broad spectrum of topics in all areas of experimental psychology. The journal is primarily dedicated to the publication of theory and review articles and brief reports of outstanding experimental work. Areas of coverage include cognitive psychology broadly construed, including but not limited to action, perception, & attention, language, learning & memory, reasoning & decision making, and social cognition. We welcome submissions that approach these issues from a variety of perspectives such as behavioral measurements, comparative psychology, development, evolutionary psychology, genetics, neuroscience, and quantitative/computational modeling. We particularly encourage integrative research that crosses traditional content and methodological boundaries.