硅微谐振器阵列:关于制造技术和 pH 值控制应力引起的悬臂刚度变化的综合研究

IF 2.6 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
G. Brunetti , A. De Pastina , C. Rotella , V. Usov , G. Villanueva , M. Hegner
{"title":"硅微谐振器阵列:关于制造技术和 pH 值控制应力引起的悬臂刚度变化的综合研究","authors":"G. Brunetti ,&nbsp;A. De Pastina ,&nbsp;C. Rotella ,&nbsp;V. Usov ,&nbsp;G. Villanueva ,&nbsp;M. Hegner","doi":"10.1016/j.mee.2024.112154","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a detailed design and fabrication process of Silicon microcantilever arrays for biomolecular detection in liquid environment, utilized with laser readout. We present typical fabrication problems and provide related solutions to obtain high quality resonators via a robust, reproducible and high-yield process. Sensors in these arrays are individually functionalized with self-assembled chemical monolayers exposing various pH-active end-groups into solution. Dynamic-mode controlled frequency measurements in varying pH solutions result in stress-induced change of the sensor spring constant. pH changes in the solution lead to deprotonation of exposed functional chemical groups at high pH and the repulsive charges induced strain is proportional to the quantity and confinement of charges at the sensor interface. These built-up strains that affect the mechanical stiffness can be reversibly relaxed when exposed again to low pH environments.</p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":"287 ","pages":"Article 112154"},"PeriodicalIF":2.6000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167931724000236/pdfft?md5=1183b305adb57154e812eb922407d6ba&pid=1-s2.0-S0167931724000236-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Silicon microresonator arrays: A comprehensive study on fabrication techniques and pH-controlled stress-induced variations in cantilever stiffness\",\"authors\":\"G. Brunetti ,&nbsp;A. De Pastina ,&nbsp;C. Rotella ,&nbsp;V. Usov ,&nbsp;G. Villanueva ,&nbsp;M. Hegner\",\"doi\":\"10.1016/j.mee.2024.112154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce a detailed design and fabrication process of Silicon microcantilever arrays for biomolecular detection in liquid environment, utilized with laser readout. We present typical fabrication problems and provide related solutions to obtain high quality resonators via a robust, reproducible and high-yield process. Sensors in these arrays are individually functionalized with self-assembled chemical monolayers exposing various pH-active end-groups into solution. Dynamic-mode controlled frequency measurements in varying pH solutions result in stress-induced change of the sensor spring constant. pH changes in the solution lead to deprotonation of exposed functional chemical groups at high pH and the repulsive charges induced strain is proportional to the quantity and confinement of charges at the sensor interface. These built-up strains that affect the mechanical stiffness can be reversibly relaxed when exposed again to low pH environments.</p></div>\",\"PeriodicalId\":18557,\"journal\":{\"name\":\"Microelectronic Engineering\",\"volume\":\"287 \",\"pages\":\"Article 112154\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167931724000236/pdfft?md5=1183b305adb57154e812eb922407d6ba&pid=1-s2.0-S0167931724000236-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167931724000236\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167931724000236","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了用于液体环境中生物分子检测的硅微悬臂阵列的详细设计和制造过程,并利用激光读出。我们介绍了典型的制造问题,并提供了相关解决方案,以便通过稳健、可重复和高产出的工艺获得高质量的谐振器。这些阵列中的传感器分别通过自组装化学单层进行功能化,将各种 pH 活性末端基团暴露在溶液中。溶液中的 pH 值变化会导致暴露在高 pH 值下的功能化学基团发生去质子化反应,而排斥电荷引起的应变与传感器界面上的电荷数量和限制成正比。当再次暴露在低 pH 值环境中时,这些影响机械刚度的累积应变可以可逆地放松。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Silicon microresonator arrays: A comprehensive study on fabrication techniques and pH-controlled stress-induced variations in cantilever stiffness

Silicon microresonator arrays: A comprehensive study on fabrication techniques and pH-controlled stress-induced variations in cantilever stiffness

We introduce a detailed design and fabrication process of Silicon microcantilever arrays for biomolecular detection in liquid environment, utilized with laser readout. We present typical fabrication problems and provide related solutions to obtain high quality resonators via a robust, reproducible and high-yield process. Sensors in these arrays are individually functionalized with self-assembled chemical monolayers exposing various pH-active end-groups into solution. Dynamic-mode controlled frequency measurements in varying pH solutions result in stress-induced change of the sensor spring constant. pH changes in the solution lead to deprotonation of exposed functional chemical groups at high pH and the repulsive charges induced strain is proportional to the quantity and confinement of charges at the sensor interface. These built-up strains that affect the mechanical stiffness can be reversibly relaxed when exposed again to low pH environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microelectronic Engineering
Microelectronic Engineering 工程技术-工程:电子与电气
CiteScore
5.30
自引率
4.30%
发文量
131
审稿时长
29 days
期刊介绍: Microelectronic Engineering is the premier nanoprocessing, and nanotechnology journal focusing on fabrication of electronic, photonic, bioelectronic, electromechanic and fluidic devices and systems, and their applications in the broad areas of electronics, photonics, energy, life sciences, and environment. It covers also the expanding interdisciplinary field of "more than Moore" and "beyond Moore" integrated nanoelectronics / photonics and micro-/nano-/bio-systems. Through its unique mixture of peer-reviewed articles, reviews, accelerated publications, short and Technical notes, and the latest research news on key developments, Microelectronic Engineering provides comprehensive coverage of this exciting, interdisciplinary and dynamic new field for researchers in academia and professionals in industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信