大脑功能连接紊乱:不耐受氧气的专业潜水员在模拟深水中的隐藏风险

IF 5.3 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Emanuela Formaggio , Lucio Pastena , Massimo Melucci , Lucio Ricciardi , Silvia Francesca Storti
{"title":"大脑功能连接紊乱:不耐受氧气的专业潜水员在模拟深水中的隐藏风险","authors":"Emanuela Formaggio ,&nbsp;Lucio Pastena ,&nbsp;Massimo Melucci ,&nbsp;Lucio Ricciardi ,&nbsp;Silvia Francesca Storti","doi":"10.1016/j.bbe.2024.01.004","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we investigated the effects of oxygen toxicity on brain activity and functional connectivity (FC) in divers using a closed-circuit oxygen breathing apparatus. We acquired and analyzed electroencephalographic (EEG) signals from a group of normal professional divers (PD) and a group that developed oxygen intolerance, i.e., oxygen-intolerant professional divers (OPD), to evaluate the potential risk of a dive and understand the physiological mechanisms involved. The results highlighted a significant difference in the baseline levels of <span><math><mi>α</mi></math></span> rhythm between PD and OPD, with PD exhibiting a lower level to counteract the effects of increased <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> inhalation, while OPD showed a higher level that resulted in a pathological state. Connectivity analysis revealed a strong correlation between cognitive and motor regions, and high levels of <span><math><mi>α</mi></math></span> synchronization at rest in OPDs. Our findings suggest that a pathological condition may underlie the higher <span><math><mi>α</mi></math></span> levels observed in these individuals when facing the stress of high <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> inhalation. These findings support the hypothesis that oxygen modulates brain networks, and have important implications for understanding the neural mechanisms involved in oxygen toxicity. The study also provides a unique opportunity to investigate the impact of neurophysiological activity in simulated critical scenarios, and opens up new perspectives in the screening and monitoring of divers.</p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"44 1","pages":"Pages 209-217"},"PeriodicalIF":5.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0208521624000044/pdfft?md5=5edb8ca083818f99257fa9753df94806&pid=1-s2.0-S0208521624000044-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Disruptions in brain functional connectivity: The hidden risk for oxygen-intolerant professional divers in simulated deep water\",\"authors\":\"Emanuela Formaggio ,&nbsp;Lucio Pastena ,&nbsp;Massimo Melucci ,&nbsp;Lucio Ricciardi ,&nbsp;Silvia Francesca Storti\",\"doi\":\"10.1016/j.bbe.2024.01.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we investigated the effects of oxygen toxicity on brain activity and functional connectivity (FC) in divers using a closed-circuit oxygen breathing apparatus. We acquired and analyzed electroencephalographic (EEG) signals from a group of normal professional divers (PD) and a group that developed oxygen intolerance, i.e., oxygen-intolerant professional divers (OPD), to evaluate the potential risk of a dive and understand the physiological mechanisms involved. The results highlighted a significant difference in the baseline levels of <span><math><mi>α</mi></math></span> rhythm between PD and OPD, with PD exhibiting a lower level to counteract the effects of increased <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> inhalation, while OPD showed a higher level that resulted in a pathological state. Connectivity analysis revealed a strong correlation between cognitive and motor regions, and high levels of <span><math><mi>α</mi></math></span> synchronization at rest in OPDs. Our findings suggest that a pathological condition may underlie the higher <span><math><mi>α</mi></math></span> levels observed in these individuals when facing the stress of high <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> inhalation. These findings support the hypothesis that oxygen modulates brain networks, and have important implications for understanding the neural mechanisms involved in oxygen toxicity. The study also provides a unique opportunity to investigate the impact of neurophysiological activity in simulated critical scenarios, and opens up new perspectives in the screening and monitoring of divers.</p></div>\",\"PeriodicalId\":55381,\"journal\":{\"name\":\"Biocybernetics and Biomedical Engineering\",\"volume\":\"44 1\",\"pages\":\"Pages 209-217\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0208521624000044/pdfft?md5=5edb8ca083818f99257fa9753df94806&pid=1-s2.0-S0208521624000044-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocybernetics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0208521624000044\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521624000044","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们研究了氧气毒性对使用闭路氧气呼吸器的潜水员大脑活动和功能连接(FC)的影响。我们采集并分析了一组正常专业潜水员(PD)和一组出现氧气不耐受的专业潜水员(OPD)的脑电图(EEG)信号,以评估潜水的潜在风险并了解其中的生理机制。结果表明,专业潜水员和职业潜水员的 α 节律基线水平存在显著差异,专业潜水员的 α 节律水平较低,可抵消氧气吸入量增加的影响,而职业潜水员的 α 节律水平较高,导致病理状态。连接性分析表明,认知区和运动区之间存在很强的相关性,OPD 在静息状态下的α 同步水平很高。我们的研究结果表明,这些人在面对吸入高浓度氧气的压力时,α水平较高可能是一种病理状态。这些发现支持了氧气调节大脑网络的假说,对于了解氧气毒性所涉及的神经机制具有重要意义。这项研究还为研究神经生理活动在模拟危急情况下的影响提供了一个独特的机会,并为潜水员的筛选和监测开辟了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disruptions in brain functional connectivity: The hidden risk for oxygen-intolerant professional divers in simulated deep water

In this study, we investigated the effects of oxygen toxicity on brain activity and functional connectivity (FC) in divers using a closed-circuit oxygen breathing apparatus. We acquired and analyzed electroencephalographic (EEG) signals from a group of normal professional divers (PD) and a group that developed oxygen intolerance, i.e., oxygen-intolerant professional divers (OPD), to evaluate the potential risk of a dive and understand the physiological mechanisms involved. The results highlighted a significant difference in the baseline levels of α rhythm between PD and OPD, with PD exhibiting a lower level to counteract the effects of increased O2 inhalation, while OPD showed a higher level that resulted in a pathological state. Connectivity analysis revealed a strong correlation between cognitive and motor regions, and high levels of α synchronization at rest in OPDs. Our findings suggest that a pathological condition may underlie the higher α levels observed in these individuals when facing the stress of high O2 inhalation. These findings support the hypothesis that oxygen modulates brain networks, and have important implications for understanding the neural mechanisms involved in oxygen toxicity. The study also provides a unique opportunity to investigate the impact of neurophysiological activity in simulated critical scenarios, and opens up new perspectives in the screening and monitoring of divers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.50
自引率
6.20%
发文量
77
审稿时长
38 days
期刊介绍: Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信