Wei-Ta Huang , Tzu-Yi Lee , Yi-Hong Bai , Hsiang-Chen Wang , Yu-Ying Hung , Kuo-Bin Hong , Fang-Chung Chen , Chia-Feng Lin , Shu-Wei Chang , Jung Han , Jr-Hau He , Yu-Heng Hong , Hao-Chung Kuo
{"title":"具有交错多量子阱的 InGaN 基蓝色谐振腔微型 LED 可实现全彩和低串扰微型 LED 显示屏","authors":"Wei-Ta Huang , Tzu-Yi Lee , Yi-Hong Bai , Hsiang-Chen Wang , Yu-Ying Hung , Kuo-Bin Hong , Fang-Chung Chen , Chia-Feng Lin , Shu-Wei Chang , Jung Han , Jr-Hau He , Yu-Heng Hong , Hao-Chung Kuo","doi":"10.1016/j.nxnano.2024.100048","DOIUrl":null,"url":null,"abstract":"<div><p>Herein, we proposed a unique structural design for indium gallium nitride (InGaN) based blue resonant cavity micro-light-emitting diodes (RC-μ-LEDs), focusing on the design, fabrication, and the relevant performance analyses. The proposed RC-μ-LEDs possess a three-layer staggered InGaN/GaN multiple quantum wells (MQWs) within the nanoporous Distributed Bragg Reflectors (NP-DBRs) and the conventional DBRs, introducing light confinement within such a resonant cavity. A passivation layer using atomic layer deposition (ALD) is adopted to reduce the leakage current from sidewall defects as well. Consequently, for the resulting RC-μ-LEDs, the divergence angle (DA) can be achieved down to 39.04°. While the input current increases from 1.77 A/cm² to 54 A/cm², the peak wavelength will shift from 456.16 nm to 449.18 nm, a blue shift of only 6.98 nm. Finally, we also discuss the temperature-dependent characteristics and the corresponding behaviors of our RC-μ-LEDs. Our demonstrated RC-μ-LEDs exhibit great wavelength stability with a diminished divergence angle, thus enabling full-color and low-crosstalk micro-LED displays for on-demand high-resolution applications.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829524000093/pdfft?md5=d28a4a59f08cc7b2a4eb430937224746&pid=1-s2.0-S2949829524000093-main.pdf","citationCount":"0","resultStr":"{\"title\":\"InGaN-based blue resonant cavity micro-LEDs with staggered multiple quantum wells enabling full-color and low-crosstalk micro-LED displays\",\"authors\":\"Wei-Ta Huang , Tzu-Yi Lee , Yi-Hong Bai , Hsiang-Chen Wang , Yu-Ying Hung , Kuo-Bin Hong , Fang-Chung Chen , Chia-Feng Lin , Shu-Wei Chang , Jung Han , Jr-Hau He , Yu-Heng Hong , Hao-Chung Kuo\",\"doi\":\"10.1016/j.nxnano.2024.100048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Herein, we proposed a unique structural design for indium gallium nitride (InGaN) based blue resonant cavity micro-light-emitting diodes (RC-μ-LEDs), focusing on the design, fabrication, and the relevant performance analyses. The proposed RC-μ-LEDs possess a three-layer staggered InGaN/GaN multiple quantum wells (MQWs) within the nanoporous Distributed Bragg Reflectors (NP-DBRs) and the conventional DBRs, introducing light confinement within such a resonant cavity. A passivation layer using atomic layer deposition (ALD) is adopted to reduce the leakage current from sidewall defects as well. Consequently, for the resulting RC-μ-LEDs, the divergence angle (DA) can be achieved down to 39.04°. While the input current increases from 1.77 A/cm² to 54 A/cm², the peak wavelength will shift from 456.16 nm to 449.18 nm, a blue shift of only 6.98 nm. Finally, we also discuss the temperature-dependent characteristics and the corresponding behaviors of our RC-μ-LEDs. Our demonstrated RC-μ-LEDs exhibit great wavelength stability with a diminished divergence angle, thus enabling full-color and low-crosstalk micro-LED displays for on-demand high-resolution applications.</p></div>\",\"PeriodicalId\":100959,\"journal\":{\"name\":\"Next Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949829524000093/pdfft?md5=d28a4a59f08cc7b2a4eb430937224746&pid=1-s2.0-S2949829524000093-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949829524000093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949829524000093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
InGaN-based blue resonant cavity micro-LEDs with staggered multiple quantum wells enabling full-color and low-crosstalk micro-LED displays
Herein, we proposed a unique structural design for indium gallium nitride (InGaN) based blue resonant cavity micro-light-emitting diodes (RC-μ-LEDs), focusing on the design, fabrication, and the relevant performance analyses. The proposed RC-μ-LEDs possess a three-layer staggered InGaN/GaN multiple quantum wells (MQWs) within the nanoporous Distributed Bragg Reflectors (NP-DBRs) and the conventional DBRs, introducing light confinement within such a resonant cavity. A passivation layer using atomic layer deposition (ALD) is adopted to reduce the leakage current from sidewall defects as well. Consequently, for the resulting RC-μ-LEDs, the divergence angle (DA) can be achieved down to 39.04°. While the input current increases from 1.77 A/cm² to 54 A/cm², the peak wavelength will shift from 456.16 nm to 449.18 nm, a blue shift of only 6.98 nm. Finally, we also discuss the temperature-dependent characteristics and the corresponding behaviors of our RC-μ-LEDs. Our demonstrated RC-μ-LEDs exhibit great wavelength stability with a diminished divergence angle, thus enabling full-color and low-crosstalk micro-LED displays for on-demand high-resolution applications.