深度社会神经科学:利用人工神经网络研究社会大脑的前景与危险。

Beau Sievers, Mark A Thornton
{"title":"深度社会神经科学:利用人工神经网络研究社会大脑的前景与危险。","authors":"Beau Sievers, Mark A Thornton","doi":"10.1093/scan/nsae014","DOIUrl":null,"url":null,"abstract":"<p><p>This review offers an accessible primer to social neuroscientists interested in neural networks. It begins by providing an overview of key concepts in deep learning. It then discusses three ways neural networks can be useful to social neuroscientists: (i) building statistical models to predict behavior from brain activity; (ii) quantifying naturalistic stimuli and social interactions; and (iii) generating cognitive models of social brain function. These applications have the potential to enhance the clinical value of neuroimaging and improve the generalizability of social neuroscience research. We also discuss the significant practical challenges, theoretical limitations and ethical issues faced by deep learning. If the field can successfully navigate these hazards, we believe that artificial neural networks may prove indispensable for the next stage of the field's development: deep social neuroscience.</p>","PeriodicalId":94208,"journal":{"name":"Social cognitive and affective neuroscience","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880882/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep social neuroscience: the promise and peril of using artificial neural networks to study the social brain.\",\"authors\":\"Beau Sievers, Mark A Thornton\",\"doi\":\"10.1093/scan/nsae014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This review offers an accessible primer to social neuroscientists interested in neural networks. It begins by providing an overview of key concepts in deep learning. It then discusses three ways neural networks can be useful to social neuroscientists: (i) building statistical models to predict behavior from brain activity; (ii) quantifying naturalistic stimuli and social interactions; and (iii) generating cognitive models of social brain function. These applications have the potential to enhance the clinical value of neuroimaging and improve the generalizability of social neuroscience research. We also discuss the significant practical challenges, theoretical limitations and ethical issues faced by deep learning. If the field can successfully navigate these hazards, we believe that artificial neural networks may prove indispensable for the next stage of the field's development: deep social neuroscience.</p>\",\"PeriodicalId\":94208,\"journal\":{\"name\":\"Social cognitive and affective neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880882/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Social cognitive and affective neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/scan/nsae014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Social cognitive and affective neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/scan/nsae014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这篇综述为对神经网络感兴趣的社会神经科学家提供了一本通俗易懂的入门读物。文章首先概述了深度学习的关键概念。然后,它讨论了神经网络对社会神经科学家有用的三种方式:i) 建立统计模型,从大脑活动中预测行为;ii) 量化自然刺激和社会互动;iii) 生成社会大脑功能的认知模型。这些应用有可能提高神经成像的临床价值,并改善社会神经科学研究的可推广性。我们还讨论了深度学习面临的重大现实挑战、理论局限和伦理问题。如果该领域能成功应对这些危险,我们相信人工神经网络可能会被证明是该领域下一阶段发展不可或缺的因素:深度社会神经科学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep social neuroscience: the promise and peril of using artificial neural networks to study the social brain.

This review offers an accessible primer to social neuroscientists interested in neural networks. It begins by providing an overview of key concepts in deep learning. It then discusses three ways neural networks can be useful to social neuroscientists: (i) building statistical models to predict behavior from brain activity; (ii) quantifying naturalistic stimuli and social interactions; and (iii) generating cognitive models of social brain function. These applications have the potential to enhance the clinical value of neuroimaging and improve the generalizability of social neuroscience research. We also discuss the significant practical challenges, theoretical limitations and ethical issues faced by deep learning. If the field can successfully navigate these hazards, we believe that artificial neural networks may prove indispensable for the next stage of the field's development: deep social neuroscience.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信