Gopal Kotecha, Steffen Ventz, Sandra Fortini, Lorenzo Trippa
{"title":"不确定性指导的因子临床试验。","authors":"Gopal Kotecha, Steffen Ventz, Sandra Fortini, Lorenzo Trippa","doi":"10.1093/biostatistics/kxad036","DOIUrl":null,"url":null,"abstract":"<p><p>The development and evaluation of novel treatment combinations is a key component of modern clinical research. The primary goals of factorial clinical trials of treatment combinations range from the estimation of intervention-specific effects, or the discovery of potential synergies, to the identification of combinations with the highest response probabilities. Most factorial studies use balanced or block randomization, with an equal number of patients assigned to each treatment combination, irrespective of the specific goals of the trial. Here, we introduce a class of Bayesian response-adaptive designs for factorial clinical trials with binary outcomes. The study design was developed using Bayesian decision-theoretic arguments and adapts the randomization probabilities to treatment combinations during the enrollment period based on the available data. Our approach enables the investigator to specify a utility function representative of the aims of the trial, and the Bayesian response-adaptive randomization algorithm aims to maximize this utility function. We considered several utility functions and factorial designs tailored to them. Then, we conducted a comparative simulation study to illustrate relevant differences of key operating characteristics across the resulting designs. We also investigated the asymptotic behavior of the proposed adaptive designs. We also used data summaries from three recent factorial trials in perioperative care, smoking cessation, and infectious disease prevention to define realistic simulation scenarios and illustrate advantages of the introduced trial designs compared to other study designs.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"833-851"},"PeriodicalIF":1.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247193/pdf/","citationCount":"0","resultStr":"{\"title\":\"Uncertainty directed factorial clinical trials.\",\"authors\":\"Gopal Kotecha, Steffen Ventz, Sandra Fortini, Lorenzo Trippa\",\"doi\":\"10.1093/biostatistics/kxad036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development and evaluation of novel treatment combinations is a key component of modern clinical research. The primary goals of factorial clinical trials of treatment combinations range from the estimation of intervention-specific effects, or the discovery of potential synergies, to the identification of combinations with the highest response probabilities. Most factorial studies use balanced or block randomization, with an equal number of patients assigned to each treatment combination, irrespective of the specific goals of the trial. Here, we introduce a class of Bayesian response-adaptive designs for factorial clinical trials with binary outcomes. The study design was developed using Bayesian decision-theoretic arguments and adapts the randomization probabilities to treatment combinations during the enrollment period based on the available data. Our approach enables the investigator to specify a utility function representative of the aims of the trial, and the Bayesian response-adaptive randomization algorithm aims to maximize this utility function. We considered several utility functions and factorial designs tailored to them. Then, we conducted a comparative simulation study to illustrate relevant differences of key operating characteristics across the resulting designs. We also investigated the asymptotic behavior of the proposed adaptive designs. We also used data summaries from three recent factorial trials in perioperative care, smoking cessation, and infectious disease prevention to define realistic simulation scenarios and illustrate advantages of the introduced trial designs compared to other study designs.</p>\",\"PeriodicalId\":55357,\"journal\":{\"name\":\"Biostatistics\",\"volume\":\" \",\"pages\":\"833-851\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247193/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biostatistics/kxad036\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxad036","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
The development and evaluation of novel treatment combinations is a key component of modern clinical research. The primary goals of factorial clinical trials of treatment combinations range from the estimation of intervention-specific effects, or the discovery of potential synergies, to the identification of combinations with the highest response probabilities. Most factorial studies use balanced or block randomization, with an equal number of patients assigned to each treatment combination, irrespective of the specific goals of the trial. Here, we introduce a class of Bayesian response-adaptive designs for factorial clinical trials with binary outcomes. The study design was developed using Bayesian decision-theoretic arguments and adapts the randomization probabilities to treatment combinations during the enrollment period based on the available data. Our approach enables the investigator to specify a utility function representative of the aims of the trial, and the Bayesian response-adaptive randomization algorithm aims to maximize this utility function. We considered several utility functions and factorial designs tailored to them. Then, we conducted a comparative simulation study to illustrate relevant differences of key operating characteristics across the resulting designs. We also investigated the asymptotic behavior of the proposed adaptive designs. We also used data summaries from three recent factorial trials in perioperative care, smoking cessation, and infectious disease prevention to define realistic simulation scenarios and illustrate advantages of the introduced trial designs compared to other study designs.
期刊介绍:
Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.