{"title":"用碳离子束辐照雄配子引起的胚和胚乳的独特发育。","authors":"Tomonari Hirano, Muneaki Murata, Yurie Watarikawa, Yoichiro Hoshino, Tomoko Abe, Hisato Kunitake","doi":"10.1007/s00497-024-00496-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>In Cyrtanthus mackenii, development of embryo and endosperm were differentially affected by fertilization of male gametes with DNA damage and mutations. Pollen irradiation with ionizing radiations has been applied in plant breeding and genetic research, and haploid plant induction has mainly been performed by male inactivation with high-dose irradiation. However, the fertilization process of irradiated male gametes and the early development of embryo and endosperm have not received much attention. Heavy-ion beams, a type of radiation, have been widely applied as effective mutagens for plants and show a high mutation rate even at low-dose irradiation. In this study, we analyzed the effects of male gametes of Cyrtanthus mackenii irradiated with a carbon-ion beam at low doses on fertilization. In immature seeds derived from the pollination of irradiated pollen grains, two types of embryo sacs were observed: embryo sac with a normally developed embryo and endosperm and embryo sac with an egg cell or an undivided zygote and an endosperm. Abnormalities in chromosome segregation, such as chromosomal bridges, were observed only in the endosperm nuclei, irrespective of the presence or absence of embryogenesis. Therefore, in Cyrtanthus, embryogenesis is strongly affected by DNA damage or mutations in male gametes. Moreover, various DNA contents were detected in the embryo and endosperm nuclei, and endoreduplication may have occurred in the endosperm nuclei. As carbon-ion irradiation causes chromosomal rearrangements even at low doses, pollen irradiation can be an interesting tool for studying double fertilization and mutation heritability.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377488/pdf/","citationCount":"0","resultStr":"{\"title\":\"Distinctive development of embryo and endosperm caused by male gametes irradiated with carbon-ion beam.\",\"authors\":\"Tomonari Hirano, Muneaki Murata, Yurie Watarikawa, Yoichiro Hoshino, Tomoko Abe, Hisato Kunitake\",\"doi\":\"10.1007/s00497-024-00496-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Key message: </strong>In Cyrtanthus mackenii, development of embryo and endosperm were differentially affected by fertilization of male gametes with DNA damage and mutations. Pollen irradiation with ionizing radiations has been applied in plant breeding and genetic research, and haploid plant induction has mainly been performed by male inactivation with high-dose irradiation. However, the fertilization process of irradiated male gametes and the early development of embryo and endosperm have not received much attention. Heavy-ion beams, a type of radiation, have been widely applied as effective mutagens for plants and show a high mutation rate even at low-dose irradiation. In this study, we analyzed the effects of male gametes of Cyrtanthus mackenii irradiated with a carbon-ion beam at low doses on fertilization. In immature seeds derived from the pollination of irradiated pollen grains, two types of embryo sacs were observed: embryo sac with a normally developed embryo and endosperm and embryo sac with an egg cell or an undivided zygote and an endosperm. Abnormalities in chromosome segregation, such as chromosomal bridges, were observed only in the endosperm nuclei, irrespective of the presence or absence of embryogenesis. Therefore, in Cyrtanthus, embryogenesis is strongly affected by DNA damage or mutations in male gametes. Moreover, various DNA contents were detected in the embryo and endosperm nuclei, and endoreduplication may have occurred in the endosperm nuclei. As carbon-ion irradiation causes chromosomal rearrangements even at low doses, pollen irradiation can be an interesting tool for studying double fertilization and mutation heritability.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377488/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00497-024-00496-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00497-024-00496-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
关键信息在Cyrtanthus mackenii中,受精雄配子的DNA损伤和突变对胚和胚乳的发育有不同的影响。电离辐射辐照花粉已被应用于植物育种和遗传研究,单倍体植物诱导主要是通过高剂量辐照使雄性配子失活来实现的。然而,辐照雄配子的受精过程以及胚胎和胚乳的早期发育并没有引起人们的重视。重离子束是辐射的一种,作为植物的有效诱变剂已被广泛应用,即使在低剂量辐照下也显示出很高的突变率。在这项研究中,我们分析了用低剂量碳离子束照射 Cyrtanthus mackenii 雄配子对受精的影响。在由经过辐照的花粉粒授粉产生的未成熟种子中,我们观察到两种类型的胚囊:带有正常发育的胚和胚乳的胚囊和带有卵细胞或未分裂的合子和胚乳的胚囊。染色体分离异常,如染色体桥,只在胚乳核中观察到,而与是否存在胚胎发生无关。因此,在 Cyrtanthus 中,胚胎发生受到雄配子中 DNA 损伤或突变的强烈影响。此外,在胚和胚乳核中检测到了不同的 DNA 含量,胚乳核中可能发生了内复制。由于碳离子辐照即使在低剂量下也会导致染色体重排,因此花粉辐照可作为研究双受精和突变遗传性的有趣工具。
Distinctive development of embryo and endosperm caused by male gametes irradiated with carbon-ion beam.
Key message: In Cyrtanthus mackenii, development of embryo and endosperm were differentially affected by fertilization of male gametes with DNA damage and mutations. Pollen irradiation with ionizing radiations has been applied in plant breeding and genetic research, and haploid plant induction has mainly been performed by male inactivation with high-dose irradiation. However, the fertilization process of irradiated male gametes and the early development of embryo and endosperm have not received much attention. Heavy-ion beams, a type of radiation, have been widely applied as effective mutagens for plants and show a high mutation rate even at low-dose irradiation. In this study, we analyzed the effects of male gametes of Cyrtanthus mackenii irradiated with a carbon-ion beam at low doses on fertilization. In immature seeds derived from the pollination of irradiated pollen grains, two types of embryo sacs were observed: embryo sac with a normally developed embryo and endosperm and embryo sac with an egg cell or an undivided zygote and an endosperm. Abnormalities in chromosome segregation, such as chromosomal bridges, were observed only in the endosperm nuclei, irrespective of the presence or absence of embryogenesis. Therefore, in Cyrtanthus, embryogenesis is strongly affected by DNA damage or mutations in male gametes. Moreover, various DNA contents were detected in the embryo and endosperm nuclei, and endoreduplication may have occurred in the endosperm nuclei. As carbon-ion irradiation causes chromosomal rearrangements even at low doses, pollen irradiation can be an interesting tool for studying double fertilization and mutation heritability.