利用基于开放阅读框的二值化结构网络分析对气单胞菌属进行分类。

Fujita Medical Journal Pub Date : 2024-02-01 Epub Date: 2023-11-29 DOI:10.20407/fmj.2023-007
Aki Sakurai, Masahiro Suzuki, Kengo Hayashi, Yohei Doi
{"title":"利用基于开放阅读框的二值化结构网络分析对气单胞菌属进行分类。","authors":"Aki Sakurai, Masahiro Suzuki, Kengo Hayashi, Yohei Doi","doi":"10.20407/fmj.2023-007","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Taxonomic assignment based on whole-genome sequencing data facilitates clear demarcation of species within a complex genus. Here, we applied a unique pan-genome phylogenetic method, open reading frame (ORF)-based binarized structure network analysis (OSNA), for taxonomic inference of <i>Aeromonas</i> spp., a complex taxonomic group consisting of 30 species.</p><p><strong>Methods: </strong>Data from 335 publicly available <i>Aeromonas</i> genomes, including the reference genomes of 30 species, were used to build a phylogenetic tree using OSNA. In OSNA, whole-genome structures are expressed as binary sequences based on the presence or absence of ORFs, and a tree is generated using neighbor-net, a distance-based method for constructing phylogenetic networks from binary sequences. The tree built by OSNA was compared to that constructed by a core-genome single-nucleotide polymorphism (SNP)-based analysis. Furthermore, the orthologous average nucleotide identity (OrthoANI) values of the sequences that clustered in a single clade in the OSNA-based tree were calculated.</p><p><strong>Results: </strong>The phylogenetic tree constructed with OSNA successfully delineated the majority of species of the genus <i>Aeromonas</i> forming conspecific clades for individual species, which was corroborated by OrthoANI values. Moreover, the OSNA-based phylogenetic tree demonstrated high compositional similarity to the core-genome SNP-based phylogenetic tree, supported by the Fowlkes-Mallows index.</p><p><strong>Conclusions: </strong>We propose that OSNA is a useful tool in predicting the taxonomic classification of complex bacterial genera.</p>","PeriodicalId":33657,"journal":{"name":"Fujita Medical Journal","volume":"10 1","pages":"8-15"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10847635/pdf/","citationCount":"0","resultStr":"{\"title\":\"Taxonomic classification of genus <i>Aeromonas</i> using open reading frame-based binarized structure network analysis.\",\"authors\":\"Aki Sakurai, Masahiro Suzuki, Kengo Hayashi, Yohei Doi\",\"doi\":\"10.20407/fmj.2023-007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Taxonomic assignment based on whole-genome sequencing data facilitates clear demarcation of species within a complex genus. Here, we applied a unique pan-genome phylogenetic method, open reading frame (ORF)-based binarized structure network analysis (OSNA), for taxonomic inference of <i>Aeromonas</i> spp., a complex taxonomic group consisting of 30 species.</p><p><strong>Methods: </strong>Data from 335 publicly available <i>Aeromonas</i> genomes, including the reference genomes of 30 species, were used to build a phylogenetic tree using OSNA. In OSNA, whole-genome structures are expressed as binary sequences based on the presence or absence of ORFs, and a tree is generated using neighbor-net, a distance-based method for constructing phylogenetic networks from binary sequences. The tree built by OSNA was compared to that constructed by a core-genome single-nucleotide polymorphism (SNP)-based analysis. Furthermore, the orthologous average nucleotide identity (OrthoANI) values of the sequences that clustered in a single clade in the OSNA-based tree were calculated.</p><p><strong>Results: </strong>The phylogenetic tree constructed with OSNA successfully delineated the majority of species of the genus <i>Aeromonas</i> forming conspecific clades for individual species, which was corroborated by OrthoANI values. Moreover, the OSNA-based phylogenetic tree demonstrated high compositional similarity to the core-genome SNP-based phylogenetic tree, supported by the Fowlkes-Mallows index.</p><p><strong>Conclusions: </strong>We propose that OSNA is a useful tool in predicting the taxonomic classification of complex bacterial genera.</p>\",\"PeriodicalId\":33657,\"journal\":{\"name\":\"Fujita Medical Journal\",\"volume\":\"10 1\",\"pages\":\"8-15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10847635/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fujita Medical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20407/fmj.2023-007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fujita Medical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20407/fmj.2023-007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:基于全基因组测序数据的分类鉴定有助于明确划分复杂属中的物种。在此,我们应用了一种独特的泛基因组系统发育方法--基于开放阅读框(ORF)的二值化结构网络分析(OSNA),对由 30 个物种组成的复杂分类群--气单胞菌属(Aeromonas spp.)进行了分类推断:方法:利用来自 335 个公开的气单胞菌基因组(包括 30 个物种的参考基因组)的数据,使用 OSNA 构建系统发生树。在 OSNA 中,全基因组结构根据 ORF 的有无以二进制序列表示,并使用邻接网生成树,邻接网是一种基于距离的方法,用于从二进制序列构建系统发育网络。将 OSNA 构建的树与基于核心基因组单核苷酸多态性(SNP)分析构建的树进行了比较。此外,还计算了在基于 OSNA 的系统树中聚类为一个支系的序列的正交平均核苷酸同一性(OrthoANI)值:结果:利用 OSNA 构建的系统发生树成功地划分出了气单胞菌属的大多数物种,各个物种形成了同种支系,OrthoANI 值证实了这一点。此外,基于 OSNA 的系统发生树与基于核心基因组 SNP 的系统发生树显示出高度的组成相似性,并得到了 Fowlkes-Mallows 指数的支持:我们认为 OSNA 是预测复杂细菌属分类的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Taxonomic classification of genus Aeromonas using open reading frame-based binarized structure network analysis.

Objectives: Taxonomic assignment based on whole-genome sequencing data facilitates clear demarcation of species within a complex genus. Here, we applied a unique pan-genome phylogenetic method, open reading frame (ORF)-based binarized structure network analysis (OSNA), for taxonomic inference of Aeromonas spp., a complex taxonomic group consisting of 30 species.

Methods: Data from 335 publicly available Aeromonas genomes, including the reference genomes of 30 species, were used to build a phylogenetic tree using OSNA. In OSNA, whole-genome structures are expressed as binary sequences based on the presence or absence of ORFs, and a tree is generated using neighbor-net, a distance-based method for constructing phylogenetic networks from binary sequences. The tree built by OSNA was compared to that constructed by a core-genome single-nucleotide polymorphism (SNP)-based analysis. Furthermore, the orthologous average nucleotide identity (OrthoANI) values of the sequences that clustered in a single clade in the OSNA-based tree were calculated.

Results: The phylogenetic tree constructed with OSNA successfully delineated the majority of species of the genus Aeromonas forming conspecific clades for individual species, which was corroborated by OrthoANI values. Moreover, the OSNA-based phylogenetic tree demonstrated high compositional similarity to the core-genome SNP-based phylogenetic tree, supported by the Fowlkes-Mallows index.

Conclusions: We propose that OSNA is a useful tool in predicting the taxonomic classification of complex bacterial genera.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.10
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信