{"title":"莫林通过调节炎症途径改善糖尿病大鼠的心肌损伤","authors":"Vipin Kumar Verma, Salma Malik, Ekta Mutneja, Anil Kumar Sahu, Vaishali Prajapati, Prashant Mishra, Jagriti Bhatia, Dharamveer Singh Arya","doi":"10.1186/s42826-024-00190-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>High blood glucose levels in diabetes lead to vascular inflammation which accelerates atherosclerosis. Herein, Morin was orally administered in male Wistar rats, at the dose of 40 mg/kg for 28 days, and on the 27th and 28th day, ISO was administered to designate groups at the dose of 85 mg/kg s.c., to induce myocardial infarction.</p><p><strong>Results: </strong>Free radical generation, including ROS, in diabetes following ISO administration, leads to the activation of both intrinsic and extrinsic pathways of apoptosis. Morin significantly (p ≤ 0.05) reduced oxidative stress (GSH, MDA, SOD), cardiac injury markers (CK-MB, LDH), inflammation (TNF, IL-6), and apoptosis (Bax, BCl<sub>2</sub>, Caspase-3). In addition, it also reduced insulin and blood glucose levels. Akt/eNOS, Nrf2/HO-1, MAPK signaling pathways, and Insulin signal transduction pathways were positively modulated by morin pre-treatment.</p><p><strong>Conclusions: </strong>Morin attenuated oxidative stress and inflammation and also modified the activity of various molecular pathways to mitigate cardiomyocyte damage during ISO-induced MI in diabetic rats.</p>","PeriodicalId":17993,"journal":{"name":"Laboratory Animal Research","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10854036/pdf/","citationCount":"0","resultStr":"{\"title\":\"Morin ameliorates myocardial injury in diabetic rats via modulation of inflammatory pathways.\",\"authors\":\"Vipin Kumar Verma, Salma Malik, Ekta Mutneja, Anil Kumar Sahu, Vaishali Prajapati, Prashant Mishra, Jagriti Bhatia, Dharamveer Singh Arya\",\"doi\":\"10.1186/s42826-024-00190-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>High blood glucose levels in diabetes lead to vascular inflammation which accelerates atherosclerosis. Herein, Morin was orally administered in male Wistar rats, at the dose of 40 mg/kg for 28 days, and on the 27th and 28th day, ISO was administered to designate groups at the dose of 85 mg/kg s.c., to induce myocardial infarction.</p><p><strong>Results: </strong>Free radical generation, including ROS, in diabetes following ISO administration, leads to the activation of both intrinsic and extrinsic pathways of apoptosis. Morin significantly (p ≤ 0.05) reduced oxidative stress (GSH, MDA, SOD), cardiac injury markers (CK-MB, LDH), inflammation (TNF, IL-6), and apoptosis (Bax, BCl<sub>2</sub>, Caspase-3). In addition, it also reduced insulin and blood glucose levels. Akt/eNOS, Nrf2/HO-1, MAPK signaling pathways, and Insulin signal transduction pathways were positively modulated by morin pre-treatment.</p><p><strong>Conclusions: </strong>Morin attenuated oxidative stress and inflammation and also modified the activity of various molecular pathways to mitigate cardiomyocyte damage during ISO-induced MI in diabetic rats.</p>\",\"PeriodicalId\":17993,\"journal\":{\"name\":\"Laboratory Animal Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10854036/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laboratory Animal Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s42826-024-00190-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laboratory Animal Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42826-024-00190-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Morin ameliorates myocardial injury in diabetic rats via modulation of inflammatory pathways.
Background: High blood glucose levels in diabetes lead to vascular inflammation which accelerates atherosclerosis. Herein, Morin was orally administered in male Wistar rats, at the dose of 40 mg/kg for 28 days, and on the 27th and 28th day, ISO was administered to designate groups at the dose of 85 mg/kg s.c., to induce myocardial infarction.
Results: Free radical generation, including ROS, in diabetes following ISO administration, leads to the activation of both intrinsic and extrinsic pathways of apoptosis. Morin significantly (p ≤ 0.05) reduced oxidative stress (GSH, MDA, SOD), cardiac injury markers (CK-MB, LDH), inflammation (TNF, IL-6), and apoptosis (Bax, BCl2, Caspase-3). In addition, it also reduced insulin and blood glucose levels. Akt/eNOS, Nrf2/HO-1, MAPK signaling pathways, and Insulin signal transduction pathways were positively modulated by morin pre-treatment.
Conclusions: Morin attenuated oxidative stress and inflammation and also modified the activity of various molecular pathways to mitigate cardiomyocyte damage during ISO-induced MI in diabetic rats.