Liqiang Chen, Yajuan Yin, Chunmiao Liu, Junying Liu, Mingqi Zheng, Yida Tang, Qing Yang, Jing Liu, Fan Chen, Lanbo Liu, Gang Liu
{"title":"二甲双胍通过上调生长分化因子 15 减轻贝伐珠单抗诱导的小鼠血管内皮损伤。","authors":"Liqiang Chen, Yajuan Yin, Chunmiao Liu, Junying Liu, Mingqi Zheng, Yida Tang, Qing Yang, Jing Liu, Fan Chen, Lanbo Liu, Gang Liu","doi":"10.22038/IJBMS.2023.72759.15827","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Bevacizumab is a commonly used anticancer drug in clinical practice, but it often leads to adverse reactions such as vascular endothelial damage, hypertension, arterial and venous thrombosis, and bleeding. This study investigated the protective effects of metformin against bevacizumab-induced vascular injury in a mouse model and examined the possible involvement of GDF15/PI3K/AKT/FOXO/PPARγ signaling in the effects.</p><p><strong>Materials and methods: </strong>C57 male mice were purchased. To investigate metformin, the mice were assigned to the saline, bevacizumab (15 mg every 3 days), metformin (1200 mg/day), and bevacizumab+metformin groups. To investigate GDF15, the mice were assigned to the siNC+bevacizumab, siNC+bevacizumab+metformin, siGDF15+bevacizumab, and siGDF15+bevacizumab+metformin groups. Histological staining was used to evaluate vascular injury. Flow cytometry was used to evaluate apoptosis. ELISA was used to measure plasma endothelial injury markers and proinflammatory cytokines. qRT-PCR and western blot were used to determine the expression of GDF15 and PI3K/AKT/FOXO/PPARγ in aortic tissues.</p><p><strong>Results: </strong>Metformin alleviated bevacizumab-induced abdominal aortic injury, endothelial cell apoptosis, and systemic inflammation in mice (all <i>P<</i>0.05). Metformin up-regulated GDF15 expression and PI3K/AKT/FOXO/PPARγ signaling in the abdominal aorta of mice treated with bevacizumab (all <i>P<</i>0.05). siGDF15 abolished the vascular protective and anti-inflammatory effects of metformin (all <i>P<</i>0.05). siGDF15 suppressed PI3K/AKT/FOXO/PPARγ signaling in the abdominal aorta of mice treated with bevacizumab (all <i>P<</i>0.05).</p><p><strong>Conclusion: </strong>Metformin attenuates bevacizumab-induced vascular endothelial injury, apoptosis, and systemic inflammation by activating GDF15/PI3K/AKT/FOXO/PPARγ signaling.</p>","PeriodicalId":14495,"journal":{"name":"Iranian Journal of Basic Medical Sciences","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10849206/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metformin alleviates bevacizumab-induced vascular endothelial injury in mice through growth differentiation factor 15 upregulation.\",\"authors\":\"Liqiang Chen, Yajuan Yin, Chunmiao Liu, Junying Liu, Mingqi Zheng, Yida Tang, Qing Yang, Jing Liu, Fan Chen, Lanbo Liu, Gang Liu\",\"doi\":\"10.22038/IJBMS.2023.72759.15827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Bevacizumab is a commonly used anticancer drug in clinical practice, but it often leads to adverse reactions such as vascular endothelial damage, hypertension, arterial and venous thrombosis, and bleeding. This study investigated the protective effects of metformin against bevacizumab-induced vascular injury in a mouse model and examined the possible involvement of GDF15/PI3K/AKT/FOXO/PPARγ signaling in the effects.</p><p><strong>Materials and methods: </strong>C57 male mice were purchased. To investigate metformin, the mice were assigned to the saline, bevacizumab (15 mg every 3 days), metformin (1200 mg/day), and bevacizumab+metformin groups. To investigate GDF15, the mice were assigned to the siNC+bevacizumab, siNC+bevacizumab+metformin, siGDF15+bevacizumab, and siGDF15+bevacizumab+metformin groups. Histological staining was used to evaluate vascular injury. Flow cytometry was used to evaluate apoptosis. ELISA was used to measure plasma endothelial injury markers and proinflammatory cytokines. qRT-PCR and western blot were used to determine the expression of GDF15 and PI3K/AKT/FOXO/PPARγ in aortic tissues.</p><p><strong>Results: </strong>Metformin alleviated bevacizumab-induced abdominal aortic injury, endothelial cell apoptosis, and systemic inflammation in mice (all <i>P<</i>0.05). Metformin up-regulated GDF15 expression and PI3K/AKT/FOXO/PPARγ signaling in the abdominal aorta of mice treated with bevacizumab (all <i>P<</i>0.05). siGDF15 abolished the vascular protective and anti-inflammatory effects of metformin (all <i>P<</i>0.05). siGDF15 suppressed PI3K/AKT/FOXO/PPARγ signaling in the abdominal aorta of mice treated with bevacizumab (all <i>P<</i>0.05).</p><p><strong>Conclusion: </strong>Metformin attenuates bevacizumab-induced vascular endothelial injury, apoptosis, and systemic inflammation by activating GDF15/PI3K/AKT/FOXO/PPARγ signaling.</p>\",\"PeriodicalId\":14495,\"journal\":{\"name\":\"Iranian Journal of Basic Medical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10849206/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Basic Medical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.22038/IJBMS.2023.72759.15827\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Basic Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.22038/IJBMS.2023.72759.15827","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Metformin alleviates bevacizumab-induced vascular endothelial injury in mice through growth differentiation factor 15 upregulation.
Objectives: Bevacizumab is a commonly used anticancer drug in clinical practice, but it often leads to adverse reactions such as vascular endothelial damage, hypertension, arterial and venous thrombosis, and bleeding. This study investigated the protective effects of metformin against bevacizumab-induced vascular injury in a mouse model and examined the possible involvement of GDF15/PI3K/AKT/FOXO/PPARγ signaling in the effects.
Materials and methods: C57 male mice were purchased. To investigate metformin, the mice were assigned to the saline, bevacizumab (15 mg every 3 days), metformin (1200 mg/day), and bevacizumab+metformin groups. To investigate GDF15, the mice were assigned to the siNC+bevacizumab, siNC+bevacizumab+metformin, siGDF15+bevacizumab, and siGDF15+bevacizumab+metformin groups. Histological staining was used to evaluate vascular injury. Flow cytometry was used to evaluate apoptosis. ELISA was used to measure plasma endothelial injury markers and proinflammatory cytokines. qRT-PCR and western blot were used to determine the expression of GDF15 and PI3K/AKT/FOXO/PPARγ in aortic tissues.
Results: Metformin alleviated bevacizumab-induced abdominal aortic injury, endothelial cell apoptosis, and systemic inflammation in mice (all P<0.05). Metformin up-regulated GDF15 expression and PI3K/AKT/FOXO/PPARγ signaling in the abdominal aorta of mice treated with bevacizumab (all P<0.05). siGDF15 abolished the vascular protective and anti-inflammatory effects of metformin (all P<0.05). siGDF15 suppressed PI3K/AKT/FOXO/PPARγ signaling in the abdominal aorta of mice treated with bevacizumab (all P<0.05).
Conclusion: Metformin attenuates bevacizumab-induced vascular endothelial injury, apoptosis, and systemic inflammation by activating GDF15/PI3K/AKT/FOXO/PPARγ signaling.
期刊介绍:
The Iranian Journal of Basic Medical Sciences (IJBMS) is a peer-reviewed, monthly publication by Mashhad University of Medical Sciences (MUMS), Mashhad, Iran . The Journal of "IJBMS” is a modern forum for scientific communication. Data and information, useful to investigators in any discipline in basic medical sciences mainly including Anatomical Sciences, Biochemistry, Genetics, Immunology, Microbiology, Pathology, Pharmacology, Pharmaceutical Sciences, and Physiology, will be published after they have been peer reviewed. This will also include reviews and multidisciplinary research.