{"title":"探索大语言模型在辐射应急响应中的作用。","authors":"Anirudh Chandra, Abinash Chakraborty","doi":"10.1088/1361-6498/ad270c","DOIUrl":null,"url":null,"abstract":"<p><p>In recent times, the field of artificial intelligence (AI) has been transformed by the introduction of large language models (LLMs). These models, popularized by OpenAI's GPT-3, have demonstrated the emergent capabilities of AI in comprehending and producing text resembling human language, which has helped them transform several industries. But its role has yet to be explored in the nuclear industry, specifically in managing radiation emergencies. The present work explores LLMs' contextual awareness, natural language interaction, and their capacity to comprehend diverse queries in a radiation emergency response setting. In this study we identify different user types and their specific LLM use-cases in radiation emergencies. Their possible interactions with ChatGPT, a popular LLM, has also been simulated and preliminary results are presented. Drawing on the insights gained from this exercise and to address concerns of reliability and misinformation, this study advocates for expert guided and domain-specific LLMs trained on radiation safety protocols and historical data. This study aims to guide radiation emergency management practitioners and decision-makers in effectively incorporating LLMs into their decision support framework.</p>","PeriodicalId":50068,"journal":{"name":"Journal of Radiological Protection","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the role of large language models in radiation emergency response.\",\"authors\":\"Anirudh Chandra, Abinash Chakraborty\",\"doi\":\"10.1088/1361-6498/ad270c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent times, the field of artificial intelligence (AI) has been transformed by the introduction of large language models (LLMs). These models, popularized by OpenAI's GPT-3, have demonstrated the emergent capabilities of AI in comprehending and producing text resembling human language, which has helped them transform several industries. But its role has yet to be explored in the nuclear industry, specifically in managing radiation emergencies. The present work explores LLMs' contextual awareness, natural language interaction, and their capacity to comprehend diverse queries in a radiation emergency response setting. In this study we identify different user types and their specific LLM use-cases in radiation emergencies. Their possible interactions with ChatGPT, a popular LLM, has also been simulated and preliminary results are presented. Drawing on the insights gained from this exercise and to address concerns of reliability and misinformation, this study advocates for expert guided and domain-specific LLMs trained on radiation safety protocols and historical data. This study aims to guide radiation emergency management practitioners and decision-makers in effectively incorporating LLMs into their decision support framework.</p>\",\"PeriodicalId\":50068,\"journal\":{\"name\":\"Journal of Radiological Protection\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Radiological Protection\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6498/ad270c\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiological Protection","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1088/1361-6498/ad270c","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Exploring the role of large language models in radiation emergency response.
In recent times, the field of artificial intelligence (AI) has been transformed by the introduction of large language models (LLMs). These models, popularized by OpenAI's GPT-3, have demonstrated the emergent capabilities of AI in comprehending and producing text resembling human language, which has helped them transform several industries. But its role has yet to be explored in the nuclear industry, specifically in managing radiation emergencies. The present work explores LLMs' contextual awareness, natural language interaction, and their capacity to comprehend diverse queries in a radiation emergency response setting. In this study we identify different user types and their specific LLM use-cases in radiation emergencies. Their possible interactions with ChatGPT, a popular LLM, has also been simulated and preliminary results are presented. Drawing on the insights gained from this exercise and to address concerns of reliability and misinformation, this study advocates for expert guided and domain-specific LLMs trained on radiation safety protocols and historical data. This study aims to guide radiation emergency management practitioners and decision-makers in effectively incorporating LLMs into their decision support framework.
期刊介绍:
Journal of Radiological Protection publishes articles on all aspects of radiological protection, including non-ionising as well as ionising radiations. Fields of interest range from research, development and theory to operational matters, education and training. The very wide spectrum of its topics includes: dosimetry, instrument development, specialized measuring techniques, epidemiology, biological effects (in vivo and in vitro) and risk and environmental impact assessments.
The journal encourages publication of data and code as well as results.