利用可行的广义最小二乘法改进 SNP 遗传性中功能富集的估算。

IF 3.3 Q2 GENETICS & HEREDITY
HGG Advances Pub Date : 2024-04-11 Epub Date: 2024-02-07 DOI:10.1016/j.xhgg.2024.100272
Zewei Xiong, Thuan-Quoc Thach, Yan Dora Zhang, Pak Chung Sham
{"title":"利用可行的广义最小二乘法改进 SNP 遗传性中功能富集的估算。","authors":"Zewei Xiong, Thuan-Quoc Thach, Yan Dora Zhang, Pak Chung Sham","doi":"10.1016/j.xhgg.2024.100272","DOIUrl":null,"url":null,"abstract":"<p><p>Functional enrichment results typically implicate tissue or cell-type-specific biological pathways in disease pathogenesis and as therapeutic targets. We propose generalized linkage disequilibrium score regression (g-LDSC) that requires only genome-wide association studies (GWASs) summary-level data to estimate functional enrichment. The method adopts the same assumptions and regression model formulation as stratified linkage disequilibrium score regression (s-LDSC). Although s-LDSC only partially uses LD information, our method uses the whole LD matrix, which accounts for possible correlated error structure via a feasible generalized least-squares estimation. We demonstrate through simulation studies under various scenarios that g-LDSC provides more precise estimates of functional enrichment than s-LDSC, regardless of model misspecification. In an application to GWAS summary statistics of 15 traits from the UK Biobank, estimates of functional enrichment using g-LDSC were lower and more realistic than those obtained from s-LDSC. In addition, g-LDSC detected more significantly enriched functional annotations among 24 functional annotations for the 15 traits than s-LDSC (118 vs. 51).</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10901842/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improved estimation of functional enrichment in SNP heritability using feasible generalized least squares.\",\"authors\":\"Zewei Xiong, Thuan-Quoc Thach, Yan Dora Zhang, Pak Chung Sham\",\"doi\":\"10.1016/j.xhgg.2024.100272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Functional enrichment results typically implicate tissue or cell-type-specific biological pathways in disease pathogenesis and as therapeutic targets. We propose generalized linkage disequilibrium score regression (g-LDSC) that requires only genome-wide association studies (GWASs) summary-level data to estimate functional enrichment. The method adopts the same assumptions and regression model formulation as stratified linkage disequilibrium score regression (s-LDSC). Although s-LDSC only partially uses LD information, our method uses the whole LD matrix, which accounts for possible correlated error structure via a feasible generalized least-squares estimation. We demonstrate through simulation studies under various scenarios that g-LDSC provides more precise estimates of functional enrichment than s-LDSC, regardless of model misspecification. In an application to GWAS summary statistics of 15 traits from the UK Biobank, estimates of functional enrichment using g-LDSC were lower and more realistic than those obtained from s-LDSC. In addition, g-LDSC detected more significantly enriched functional annotations among 24 functional annotations for the 15 traits than s-LDSC (118 vs. 51).</p>\",\"PeriodicalId\":34530,\"journal\":{\"name\":\"HGG Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10901842/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HGG Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xhgg.2024.100272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HGG Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xhgg.2024.100272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

功能富集结果通常涉及疾病发病机制中特定组织或细胞类型的生物通路,并可作为治疗靶点。我们提出了广义的连锁变异平衡得分回归(g-LDSC),它只需要全基因组关联研究(GWAS)的摘要水平数据就能估计功能富集。该方法采用了与分层连锁差异平衡得分回归(s-LDSC)相同的假设和回归模型表述。s-LDSC 仅部分利用了 LD 信息,而我们的方法利用了整个 LD 矩阵,通过可行的广义最小二乘估计,考虑了可能的相关误差结构。我们通过各种情况下的模拟研究证明,与 s-LDSC 相比,g-LDSC 能提供更精确的功能富集估计值,而不受模型错误规范的影响。在对英国生物库中 15 个性状的 GWAS 统计摘要的应用中,使用 g-LDSC 估算的功能富集度比使用 s-LDSC 估算的功能富集度更低,也更符合实际情况。此外,与 s-LDSC 相比,g-LDSC 在 15 个性状的 24 个功能注释中检测到了更多显著富集的功能注释(118 对 51)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved estimation of functional enrichment in SNP heritability using feasible generalized least squares.

Functional enrichment results typically implicate tissue or cell-type-specific biological pathways in disease pathogenesis and as therapeutic targets. We propose generalized linkage disequilibrium score regression (g-LDSC) that requires only genome-wide association studies (GWASs) summary-level data to estimate functional enrichment. The method adopts the same assumptions and regression model formulation as stratified linkage disequilibrium score regression (s-LDSC). Although s-LDSC only partially uses LD information, our method uses the whole LD matrix, which accounts for possible correlated error structure via a feasible generalized least-squares estimation. We demonstrate through simulation studies under various scenarios that g-LDSC provides more precise estimates of functional enrichment than s-LDSC, regardless of model misspecification. In an application to GWAS summary statistics of 15 traits from the UK Biobank, estimates of functional enrichment using g-LDSC were lower and more realistic than those obtained from s-LDSC. In addition, g-LDSC detected more significantly enriched functional annotations among 24 functional annotations for the 15 traits than s-LDSC (118 vs. 51).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
HGG Advances
HGG Advances Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
4.30
自引率
4.50%
发文量
69
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信