ZNF787 和 HDAC1 在阿尔茨海默病微环境体外模型中介导血脑屏障通透性

IF 2.9 3区 医学 Q2 NEUROSCIENCES
Lu Zhang, Baicheng Zhu, Xinxin Zhou, Hao Ning, Fengying Zhang, Bingju Yan, Jiajia Chen, Teng Ma
{"title":"ZNF787 和 HDAC1 在阿尔茨海默病微环境体外模型中介导血脑屏障通透性","authors":"Lu Zhang, Baicheng Zhu, Xinxin Zhou, Hao Ning, Fengying Zhang, Bingju Yan, Jiajia Chen, Teng Ma","doi":"10.1007/s12640-024-00693-4","DOIUrl":null,"url":null,"abstract":"<p><p>The permeability of the blood-brain barrier (BBB) is increased in Alzheimer's disease (AD). This plays a key role in the instigation and maintenance of chronic inflammation during AD. Experiments using AD models showed that the increased permeability of the BBB was mainly caused by the decreased expression of tight junction-related proteins occludin and claudin-5. In this study, we found that ZNF787 and HDAC1 were upregulated in β-amyloid (Aβ)<sub>1-42</sub>-incubated endothelial cells, resulting in increased BBB permeability. Conversely, the silencing of ZNF787 and HDAC1 by RNAi led to reduced BBB permeability. The silencing of ZNF787 and HDAC1 enhanced the expression of occludin and claudin-5. Mechanistically, ZNF787 binds to promoter regions for occludin and claudin-5 and functions as a transcriptional regulator. Furthermore, we demonstrate that ZNF787 interacts with HDAC1, and this resulted in the downregulation of the expression of genes encoding tight junction-related proteins to increase in BBB permeability. Taken together, our study identifies critical roles for the interaction between ZNF787 and HDAC1 in regulating BBB permeability and the pathogenesis of AD.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 1","pages":"12"},"PeriodicalIF":2.9000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ZNF787 and HDAC1 Mediate Blood-Brain Barrier Permeability in an In Vitro Model of Alzheimer's Disease Microenvironment.\",\"authors\":\"Lu Zhang, Baicheng Zhu, Xinxin Zhou, Hao Ning, Fengying Zhang, Bingju Yan, Jiajia Chen, Teng Ma\",\"doi\":\"10.1007/s12640-024-00693-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The permeability of the blood-brain barrier (BBB) is increased in Alzheimer's disease (AD). This plays a key role in the instigation and maintenance of chronic inflammation during AD. Experiments using AD models showed that the increased permeability of the BBB was mainly caused by the decreased expression of tight junction-related proteins occludin and claudin-5. In this study, we found that ZNF787 and HDAC1 were upregulated in β-amyloid (Aβ)<sub>1-42</sub>-incubated endothelial cells, resulting in increased BBB permeability. Conversely, the silencing of ZNF787 and HDAC1 by RNAi led to reduced BBB permeability. The silencing of ZNF787 and HDAC1 enhanced the expression of occludin and claudin-5. Mechanistically, ZNF787 binds to promoter regions for occludin and claudin-5 and functions as a transcriptional regulator. Furthermore, we demonstrate that ZNF787 interacts with HDAC1, and this resulted in the downregulation of the expression of genes encoding tight junction-related proteins to increase in BBB permeability. Taken together, our study identifies critical roles for the interaction between ZNF787 and HDAC1 in regulating BBB permeability and the pathogenesis of AD.</p>\",\"PeriodicalId\":19193,\"journal\":{\"name\":\"Neurotoxicity Research\",\"volume\":\"42 1\",\"pages\":\"12\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurotoxicity Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12640-024-00693-4\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicity Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12640-024-00693-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病(AD)患者血脑屏障(BBB)的通透性增加。这在阿尔茨海默病慢性炎症的诱发和维持过程中起着关键作用。利用 AD 模型进行的实验表明,血脑屏障通透性的增加主要是由紧密连接相关蛋白 occludin 和 claudin-5 的表达减少引起的。本研究发现,ZNF787和HDAC1在β-淀粉样蛋白(Aβ)1-42-诱导的内皮细胞中上调,导致BBB通透性增加。相反,通过 RNAi 沉默 ZNF787 和 HDAC1 则会降低 BBB 的通透性。ZNF787和HDAC1的沉默增强了occludin和claudin-5的表达。从机理上讲,ZNF787能与闭塞素和Claudin-5的启动子区域结合,并发挥转录调节因子的作用。此外,我们还证明 ZNF787 与 HDAC1 相互作用,导致编码紧密连接相关蛋白的基因表达下调,从而增加了 BBB 的通透性。综上所述,我们的研究发现了ZNF787与HDAC1之间的相互作用在调节BBB通透性和AD发病机制中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

ZNF787 and HDAC1 Mediate Blood-Brain Barrier Permeability in an In Vitro Model of Alzheimer's Disease Microenvironment.

ZNF787 and HDAC1 Mediate Blood-Brain Barrier Permeability in an In Vitro Model of Alzheimer's Disease Microenvironment.

The permeability of the blood-brain barrier (BBB) is increased in Alzheimer's disease (AD). This plays a key role in the instigation and maintenance of chronic inflammation during AD. Experiments using AD models showed that the increased permeability of the BBB was mainly caused by the decreased expression of tight junction-related proteins occludin and claudin-5. In this study, we found that ZNF787 and HDAC1 were upregulated in β-amyloid (Aβ)1-42-incubated endothelial cells, resulting in increased BBB permeability. Conversely, the silencing of ZNF787 and HDAC1 by RNAi led to reduced BBB permeability. The silencing of ZNF787 and HDAC1 enhanced the expression of occludin and claudin-5. Mechanistically, ZNF787 binds to promoter regions for occludin and claudin-5 and functions as a transcriptional regulator. Furthermore, we demonstrate that ZNF787 interacts with HDAC1, and this resulted in the downregulation of the expression of genes encoding tight junction-related proteins to increase in BBB permeability. Taken together, our study identifies critical roles for the interaction between ZNF787 and HDAC1 in regulating BBB permeability and the pathogenesis of AD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurotoxicity Research
Neurotoxicity Research 医学-神经科学
CiteScore
7.70
自引率
5.40%
发文量
164
审稿时长
6-12 weeks
期刊介绍: Neurotoxicity Research is an international, interdisciplinary broad-based journal for reporting both basic and clinical research on classical neurotoxicity effects and mechanisms associated with neurodegeneration, necrosis, neuronal apoptosis, nerve regeneration, neurotrophin mechanisms, and topics related to these themes. Published papers have focused on: NEURODEGENERATION and INJURY Neuropathologies Neuronal apoptosis Neuronal necrosis Neural death processes (anatomical, histochemical, neurochemical) Neurodegenerative Disorders Neural Effects of Substances of Abuse NERVE REGENERATION and RESPONSES TO INJURY Neural Adaptations Neurotrophin mechanisms and actions NEURO(CYTO)TOXICITY PROCESSES and NEUROPROTECTION Excitatory amino acids Neurotoxins, endogenous and synthetic Reactive oxygen (nitrogen) species Neuroprotection by endogenous and exogenous agents Papers on related themes are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信