CAI2M2:适用于异构互联车辆的集中式自主包容交叉路口管理机制

IF 5.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ashkan Gholamhosseinian;Jochen Seitz
{"title":"CAI2M2:适用于异构互联车辆的集中式自主包容交叉路口管理机制","authors":"Ashkan Gholamhosseinian;Jochen Seitz","doi":"10.1109/OJVT.2024.3354393","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel centralized autonomous inclusive intersection management mechanism (CAI\n<sup>2</sup>\nM\n<sup>2</sup>\n) for heterogeneous connected vehicles (HCVs). The system embraces a diverse array of human-driven vehicles, each possessing unique characteristics. The proposed system navigates vehicles through the intersection safely and efficiently considering various road conditions including dry (D), wet (W), snowy (S), and icy (I). The communication relies on dedicated short-range communications (DSRC) to facilitate the seamless exchange of traffic information between roadside unit (RSU) and vehicles. The coordination policy takes into account parameters such as vehicle types, arrival times, intersection rules, road priorities, and prevailing road conditions. To enhance safety and prevent collisions, vehicles are classified based on distinctive safety features and dynamics, such as reaction distance (\n<inline-formula><tex-math>${d_{r}}$</tex-math></inline-formula>\n), stopping distance (\n<inline-formula><tex-math>${d_{s}}$</tex-math></inline-formula>\n), braking distance (\n<inline-formula><tex-math>${d_{b}}$</tex-math></inline-formula>\n), braking lag distance (\n<inline-formula><tex-math>${d_{bl}}$</tex-math></inline-formula>\n), acceleration (\n<inline-formula><tex-math>$acc.$</tex-math></inline-formula>\n), deceleration (\n<inline-formula><tex-math>$dec.$</tex-math></inline-formula>\n), load, and velocity (\n<inline-formula><tex-math>$v$</tex-math></inline-formula>\n). The paper evaluates the system performance through metrics encompassing average travel time (ATT), packet loss rate (PLR), throughput, intersection busy time (IBT), and channel busy rate (CBR) across several traffic scenarios with different densities and distribution patterns. Additionally, the study compares the system efficiency with signalized intersections under various road conditions, aiming to identify an optimal control approach for autonomous intersection management","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"5 ","pages":"230-243"},"PeriodicalIF":5.3000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10400835","citationCount":"0","resultStr":"{\"title\":\"CAI2M2: A Centralized Autonomous Inclusive Intersection Management Mechanism for Heterogeneous Connected Vehicles\",\"authors\":\"Ashkan Gholamhosseinian;Jochen Seitz\",\"doi\":\"10.1109/OJVT.2024.3354393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a novel centralized autonomous inclusive intersection management mechanism (CAI\\n<sup>2</sup>\\nM\\n<sup>2</sup>\\n) for heterogeneous connected vehicles (HCVs). The system embraces a diverse array of human-driven vehicles, each possessing unique characteristics. The proposed system navigates vehicles through the intersection safely and efficiently considering various road conditions including dry (D), wet (W), snowy (S), and icy (I). The communication relies on dedicated short-range communications (DSRC) to facilitate the seamless exchange of traffic information between roadside unit (RSU) and vehicles. The coordination policy takes into account parameters such as vehicle types, arrival times, intersection rules, road priorities, and prevailing road conditions. To enhance safety and prevent collisions, vehicles are classified based on distinctive safety features and dynamics, such as reaction distance (\\n<inline-formula><tex-math>${d_{r}}$</tex-math></inline-formula>\\n), stopping distance (\\n<inline-formula><tex-math>${d_{s}}$</tex-math></inline-formula>\\n), braking distance (\\n<inline-formula><tex-math>${d_{b}}$</tex-math></inline-formula>\\n), braking lag distance (\\n<inline-formula><tex-math>${d_{bl}}$</tex-math></inline-formula>\\n), acceleration (\\n<inline-formula><tex-math>$acc.$</tex-math></inline-formula>\\n), deceleration (\\n<inline-formula><tex-math>$dec.$</tex-math></inline-formula>\\n), load, and velocity (\\n<inline-formula><tex-math>$v$</tex-math></inline-formula>\\n). The paper evaluates the system performance through metrics encompassing average travel time (ATT), packet loss rate (PLR), throughput, intersection busy time (IBT), and channel busy rate (CBR) across several traffic scenarios with different densities and distribution patterns. Additionally, the study compares the system efficiency with signalized intersections under various road conditions, aiming to identify an optimal control approach for autonomous intersection management\",\"PeriodicalId\":34270,\"journal\":{\"name\":\"IEEE Open Journal of Vehicular Technology\",\"volume\":\"5 \",\"pages\":\"230-243\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10400835\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Vehicular Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10400835/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10400835/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文为异构联网车辆(HCV)介绍了一种新颖的集中式自主包容性交叉路口管理机制(CAI2M2)。该系统包含多种多样的人类驾驶车辆,每种车辆都具有独特的特性。考虑到包括干燥(D)、潮湿(W)、积雪(S)和结冰(I)在内的各种路况,所提议的系统可引导车辆安全高效地通过交叉路口。通信依赖于专用短程通信(DSRC),以促进路边装置(RSU)和车辆之间交通信息的无缝交换。协调策略考虑了车辆类型、到达时间、交叉路口规则、道路优先级和当前路况等参数。为提高安全性和防止碰撞,根据不同的安全特征和动态特性对车辆进行分类,如反应距离({d_{r}}$)、停车距离({d_{s}}$)、制动距离({d_{b}}$)、制动滞后距离({d_{bl}}$)、加速度({acc.}$)、减速度({dec.}$)、负载和速度({v}}$)。论文通过平均旅行时间(ATT)、数据包丢失率(PLR)、吞吐量、路口繁忙时间(IBT)和信道繁忙率(CBR)等指标,评估了具有不同密度和分布模式的几种交通场景下的系统性能。此外,该研究还将系统效率与各种道路条件下的信号灯路口进行了比较,旨在为自主路口管理确定最佳控制方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CAI2M2: A Centralized Autonomous Inclusive Intersection Management Mechanism for Heterogeneous Connected Vehicles
This paper introduces a novel centralized autonomous inclusive intersection management mechanism (CAI 2 M 2 ) for heterogeneous connected vehicles (HCVs). The system embraces a diverse array of human-driven vehicles, each possessing unique characteristics. The proposed system navigates vehicles through the intersection safely and efficiently considering various road conditions including dry (D), wet (W), snowy (S), and icy (I). The communication relies on dedicated short-range communications (DSRC) to facilitate the seamless exchange of traffic information between roadside unit (RSU) and vehicles. The coordination policy takes into account parameters such as vehicle types, arrival times, intersection rules, road priorities, and prevailing road conditions. To enhance safety and prevent collisions, vehicles are classified based on distinctive safety features and dynamics, such as reaction distance ( ${d_{r}}$ ), stopping distance ( ${d_{s}}$ ), braking distance ( ${d_{b}}$ ), braking lag distance ( ${d_{bl}}$ ), acceleration ( $acc.$ ), deceleration ( $dec.$ ), load, and velocity ( $v$ ). The paper evaluates the system performance through metrics encompassing average travel time (ATT), packet loss rate (PLR), throughput, intersection busy time (IBT), and channel busy rate (CBR) across several traffic scenarios with different densities and distribution patterns. Additionally, the study compares the system efficiency with signalized intersections under various road conditions, aiming to identify an optimal control approach for autonomous intersection management
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信