基于深度学习的药物分子新生成的研究现状与前景。

Huanghao Shi, Zhichao Wang, Litao Zhou, Zhiwang Xu, Liangxu Xie, Ren Kong, Shan Chang
{"title":"基于深度学习的药物分子新生成的研究现状与前景。","authors":"Huanghao Shi, Zhichao Wang, Litao Zhou, Zhiwang Xu, Liangxu Xie, Ren Kong, Shan Chang","doi":"10.2174/0115734099287389240126072433","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional molecular de novo generation methods, such as evolutionary algorithms, generate new molecules mainly by linking existing atomic building blocks. The challenging issues in these methods include difficulty in synthesis, failure to achieve desired properties, and structural optimization requirements. Advances in deep learning offer new ideas for rational and robust de novo drug design. Deep learning, a branch of machine learning, is more efficient than traditional methods for processing problems, such as speech, image, and translation. This study provides a comprehensive overview of the current state of research in de novo drug design based on deep learning and identifies key areas for further development. Deep learning-based de novo drug design is pivotal in four key dimensions. Molecular databases form the basis for model training, while effective molecular representations impact model performance. Common DL models (GANs, RNNs, VAEs, CNNs, DMs) generate drug molecules with desired properties. The evaluation metrics guide research directions by determining the quality and applicability of generated molecules. This abstract highlights the foundational aspects of DL-based de novo drug design, offering a concise overview of its multifaceted contributions. Consequently, deep learning in de novo molecule generation has attracted more attention from academics and industry. As a result, many deep learning-based de novo molecule generation types have been actively proposed.</p>","PeriodicalId":93961,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Status and Prospects of Research on Deep Learning-based De Novo Generation of Drug Molecules.\",\"authors\":\"Huanghao Shi, Zhichao Wang, Litao Zhou, Zhiwang Xu, Liangxu Xie, Ren Kong, Shan Chang\",\"doi\":\"10.2174/0115734099287389240126072433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traditional molecular de novo generation methods, such as evolutionary algorithms, generate new molecules mainly by linking existing atomic building blocks. The challenging issues in these methods include difficulty in synthesis, failure to achieve desired properties, and structural optimization requirements. Advances in deep learning offer new ideas for rational and robust de novo drug design. Deep learning, a branch of machine learning, is more efficient than traditional methods for processing problems, such as speech, image, and translation. This study provides a comprehensive overview of the current state of research in de novo drug design based on deep learning and identifies key areas for further development. Deep learning-based de novo drug design is pivotal in four key dimensions. Molecular databases form the basis for model training, while effective molecular representations impact model performance. Common DL models (GANs, RNNs, VAEs, CNNs, DMs) generate drug molecules with desired properties. The evaluation metrics guide research directions by determining the quality and applicability of generated molecules. This abstract highlights the foundational aspects of DL-based de novo drug design, offering a concise overview of its multifaceted contributions. Consequently, deep learning in de novo molecule generation has attracted more attention from academics and industry. As a result, many deep learning-based de novo molecule generation types have been actively proposed.</p>\",\"PeriodicalId\":93961,\"journal\":{\"name\":\"Current computer-aided drug design\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current computer-aided drug design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734099287389240126072433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current computer-aided drug design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115734099287389240126072433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的分子从头生成方法(如进化算法)主要通过连接现有的原子构件来生成新分子。这些方法面临的挑战包括合成困难、无法实现理想特性以及结构优化要求。深度学习的进步为合理、稳健的新药设计提供了新思路。深度学习是机器学习的一个分支,在处理语音、图像和翻译等问题时比传统方法更有效。本研究全面概述了基于深度学习的从头药物设计的研究现状,并指出了有待进一步发展的关键领域。基于深度学习的从头药物设计在四个关键方面至关重要。分子数据库是模型训练的基础,而有效的分子表征会影响模型的性能。常见的深度学习模型(GANs、RNNs、VAEs、CNNs、DMs)可生成具有所需特性的药物分子。评估指标通过确定生成分子的质量和适用性来指导研究方向。本摘要强调了基于深度学习的从头开始药物设计的基础方面,简明扼要地概述了其多方面的贡献。因此,深度学习在从头分子生成中的应用吸引了学术界和工业界更多的关注。因此,许多基于深度学习的从头分子生成类型被积极提出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Status and Prospects of Research on Deep Learning-based De Novo Generation of Drug Molecules.

Traditional molecular de novo generation methods, such as evolutionary algorithms, generate new molecules mainly by linking existing atomic building blocks. The challenging issues in these methods include difficulty in synthesis, failure to achieve desired properties, and structural optimization requirements. Advances in deep learning offer new ideas for rational and robust de novo drug design. Deep learning, a branch of machine learning, is more efficient than traditional methods for processing problems, such as speech, image, and translation. This study provides a comprehensive overview of the current state of research in de novo drug design based on deep learning and identifies key areas for further development. Deep learning-based de novo drug design is pivotal in four key dimensions. Molecular databases form the basis for model training, while effective molecular representations impact model performance. Common DL models (GANs, RNNs, VAEs, CNNs, DMs) generate drug molecules with desired properties. The evaluation metrics guide research directions by determining the quality and applicability of generated molecules. This abstract highlights the foundational aspects of DL-based de novo drug design, offering a concise overview of its multifaceted contributions. Consequently, deep learning in de novo molecule generation has attracted more attention from academics and industry. As a result, many deep learning-based de novo molecule generation types have been actively proposed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信