[人类细胞色素 P450 (CYP) 2D6 和 CYP3A 亚家族成员催化的代谢活性以及各种化合物(包括内源性类固醇激素)对这些活性的影响]。

IF 0.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Toshiro Niwa
{"title":"[人类细胞色素 P450 (CYP) 2D6 和 CYP3A 亚家族成员催化的代谢活性以及各种化合物(包括内源性类固醇激素)对这些活性的影响]。","authors":"Toshiro Niwa","doi":"10.1248/yakushi.23-00174","DOIUrl":null,"url":null,"abstract":"<p><p>My research focused on the effects of various drugs on (1) dopamine formation from p-tyramine catalyzed by polymorphic cytochrome P450 (CYP or P450) 2D6 variants and (2) endogenous steroid hormone hydroxylation catalyzed by CYP3A subfamily members (CYP3A4, CYP3A5, CYP3A7). The activation (cooperativity) of metabolic reactions catalyzed by P450s was especially emphasized. The effects of various psychotropic agents on dopamine formation from p-tyramine, catalyzed by wild-type CYP2D6.1 and CYP2D6 variants, including CYP2D6.2 (Arg296Cys;Ser486Thr), CYP2D6.10 (Pro34Ser;Ser486Thr), and CYP2D6.39 (Ser486Thr) were compared. Michaelis (K<sub>m</sub>) and inhibition (K<sub>i</sub>) constants of the psychotropic agents in the presence of CYP2D6.10 were higher than those observed in the presence of other CYP2D6 variants. Fluvoxamine, fluoxetine, milnacipran, and haloperidol activated CYP2D6-catalyzed dopamine formation [decreasing the K<sub>m</sub> and/or increasing the maximal velocity (k<sub>cat</sub>)], and this activation was CYP2D6 variant-dependent. Regarding the CYP3A subfamily, the effects of various compounds including endogenous steroid hormones on the 6β-hydroxylation of steroid hormones, such as testosterone, progesterone, and cortisol, were determined; it was found that testosterone, dehydroepiandrosterone, and/or α-naphthoflavone activated 6β-hydroxylation of cortisol and/or progesterone, but the effects varied in the presence of different CYP3A subfamily members. Further studies are required to confirm the mechanisms and therapeutic relevance of these activation phenomena.</p>","PeriodicalId":23810,"journal":{"name":"Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Metabolic Activities Catalyzed by Human Cytochrome P450 (CYP) 2D6 and CYP3A Subfamily Members and Effect of Various Compounds, Including Endogenous Steroid Hormones, on These Activities].\",\"authors\":\"Toshiro Niwa\",\"doi\":\"10.1248/yakushi.23-00174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>My research focused on the effects of various drugs on (1) dopamine formation from p-tyramine catalyzed by polymorphic cytochrome P450 (CYP or P450) 2D6 variants and (2) endogenous steroid hormone hydroxylation catalyzed by CYP3A subfamily members (CYP3A4, CYP3A5, CYP3A7). The activation (cooperativity) of metabolic reactions catalyzed by P450s was especially emphasized. The effects of various psychotropic agents on dopamine formation from p-tyramine, catalyzed by wild-type CYP2D6.1 and CYP2D6 variants, including CYP2D6.2 (Arg296Cys;Ser486Thr), CYP2D6.10 (Pro34Ser;Ser486Thr), and CYP2D6.39 (Ser486Thr) were compared. Michaelis (K<sub>m</sub>) and inhibition (K<sub>i</sub>) constants of the psychotropic agents in the presence of CYP2D6.10 were higher than those observed in the presence of other CYP2D6 variants. Fluvoxamine, fluoxetine, milnacipran, and haloperidol activated CYP2D6-catalyzed dopamine formation [decreasing the K<sub>m</sub> and/or increasing the maximal velocity (k<sub>cat</sub>)], and this activation was CYP2D6 variant-dependent. Regarding the CYP3A subfamily, the effects of various compounds including endogenous steroid hormones on the 6β-hydroxylation of steroid hormones, such as testosterone, progesterone, and cortisol, were determined; it was found that testosterone, dehydroepiandrosterone, and/or α-naphthoflavone activated 6β-hydroxylation of cortisol and/or progesterone, but the effects varied in the presence of different CYP3A subfamily members. Further studies are required to confirm the mechanisms and therapeutic relevance of these activation phenomena.</p>\",\"PeriodicalId\":23810,\"journal\":{\"name\":\"Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1248/yakushi.23-00174\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/yakushi.23-00174","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

我的研究重点是各种药物对以下方面的影响:(1) 多态细胞色素 P450(CYP 或 P450)2D6 变体催化的对酪胺多巴胺形成;(2) CYP3A 亚家族成员(CYP3A4、CYP3A5、CYP3A7)催化的内源性类固醇激素羟化。特别强调了 P450s 催化的代谢反应的活化(合作性)。在野生型 CYP2D6.1 和 CYP2D6 变体(包括 CYP2D6.2(Arg296Cys;Ser486Thr)、CYP2D6.10(Pro34Ser;Ser486Thr)和 CYP2D6.39(Ser486Thr))的催化下,比较了各种精神药物对对酪胺形成多巴胺的影响。在 CYP2D6.10 存在的情况下,精神药物的迈克尔斯常数(Km)和抑制常数(Ki)高于在其他 CYP2D6 变体存在的情况下观察到的数值。氟伏沙明、氟西汀、米那西普兰和氟哌啶醇能激活 CYP2D6 催化的多巴胺形成[降低 Km 和/或增加最大速度(kcat)],这种激活作用与 CYP2D6 变体有关。关于 CYP3A 亚家族,研究人员测定了各种化合物(包括内源性类固醇激素)对类固醇激素(如睾酮、孕酮和皮质醇)的 6β- 羟基化的影响;结果发现,睾酮、脱氢表雄酮和/或 α-萘甲黄酮可激活皮质醇和/或孕酮的 6β- 羟基化,但在不同的 CYP3A 亚家族成员存在的情况下,其影响有所不同。要确认这些激活现象的机制和治疗相关性,还需要进一步的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Metabolic Activities Catalyzed by Human Cytochrome P450 (CYP) 2D6 and CYP3A Subfamily Members and Effect of Various Compounds, Including Endogenous Steroid Hormones, on These Activities].

My research focused on the effects of various drugs on (1) dopamine formation from p-tyramine catalyzed by polymorphic cytochrome P450 (CYP or P450) 2D6 variants and (2) endogenous steroid hormone hydroxylation catalyzed by CYP3A subfamily members (CYP3A4, CYP3A5, CYP3A7). The activation (cooperativity) of metabolic reactions catalyzed by P450s was especially emphasized. The effects of various psychotropic agents on dopamine formation from p-tyramine, catalyzed by wild-type CYP2D6.1 and CYP2D6 variants, including CYP2D6.2 (Arg296Cys;Ser486Thr), CYP2D6.10 (Pro34Ser;Ser486Thr), and CYP2D6.39 (Ser486Thr) were compared. Michaelis (Km) and inhibition (Ki) constants of the psychotropic agents in the presence of CYP2D6.10 were higher than those observed in the presence of other CYP2D6 variants. Fluvoxamine, fluoxetine, milnacipran, and haloperidol activated CYP2D6-catalyzed dopamine formation [decreasing the Km and/or increasing the maximal velocity (kcat)], and this activation was CYP2D6 variant-dependent. Regarding the CYP3A subfamily, the effects of various compounds including endogenous steroid hormones on the 6β-hydroxylation of steroid hormones, such as testosterone, progesterone, and cortisol, were determined; it was found that testosterone, dehydroepiandrosterone, and/or α-naphthoflavone activated 6β-hydroxylation of cortisol and/or progesterone, but the effects varied in the presence of different CYP3A subfamily members. Further studies are required to confirm the mechanisms and therapeutic relevance of these activation phenomena.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
169
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信