驴血管性视网膜血管区和无血管区神经细胞和神经胶质细胞的形态学和免疫组化分化。

IF 2.9 4区 生物学 Q1 ANATOMY & MORPHOLOGY
Cells Tissues Organs Pub Date : 2024-01-01 Epub Date: 2024-02-06 DOI:10.1159/000537688
Wafaa Gaber, Manal T Hussein, Khaled H Aly, Fatma M Abdel-Maksoud
{"title":"驴血管性视网膜血管区和无血管区神经细胞和神经胶质细胞的形态学和免疫组化分化。","authors":"Wafaa Gaber, Manal T Hussein, Khaled H Aly, Fatma M Abdel-Maksoud","doi":"10.1159/000537688","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Ocular diseases pose a significant health concern for donkeys. However, studies examining the microanatomy and cell populations of the donkey retina are scarce. The current study aimed to describe the vascular pattern of the donkey retina and document its cellular components.</p><p><strong>Methods: </strong>The donkey retina specimens were obtained from different retinal regions and prepared for semithin sectioning and immunohistochemistry.</p><p><strong>Results: </strong>The donkey has a paurangiotic retina in which retinal vessels are confined to a narrow area around the optic disc. Glial cells coexist with the blood vessels being very numerous in the vascular region and become scanty in the avascular ones. S-100-positive astrocytes could be observed in these avascular areas. Ganglion cells are organized in a single layer with the least population existing in the peripheral retina. Acidic fibroblast growth factor (AFGF) is immunoreactive in amacrine and ganglion cells. A subpopulation of amacrine cells reacted strongly to tyrosine hydroxylase (TH), and others reacted positively to S-100 protein. Ganglion cell nuclei exhibited a strong immunoreactivity to S-100 protein as well. Furthermore, glial fibrillary acidic protein (GFAP) is used to identify Müller cells that extend their processes across the retina from the inner to the outer limiting membrane.</p><p><strong>Conclusions: </strong>In conclusion, our findings provide novel insights into the normal retinal organization. The donkey retina shows the characteristic expression of immunohistochemical markers for the major cell types. In addition, the distribution of glial cells is comparable between the vascular and avascular regions.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":" ","pages":"368-381"},"PeriodicalIF":2.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morphological and Immunohistochemical Differentiation of Neuronal and Glial Cells of the Vascular and Avascular Regions of the Donkey's Paurangiotic Retina.\",\"authors\":\"Wafaa Gaber, Manal T Hussein, Khaled H Aly, Fatma M Abdel-Maksoud\",\"doi\":\"10.1159/000537688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Ocular diseases pose a significant health concern for donkeys. However, studies examining the microanatomy and cell populations of the donkey retina are scarce. The current study aimed to describe the vascular pattern of the donkey retina and document its cellular components.</p><p><strong>Methods: </strong>The donkey retina specimens were obtained from different retinal regions and prepared for semithin sectioning and immunohistochemistry.</p><p><strong>Results: </strong>The donkey has a paurangiotic retina in which retinal vessels are confined to a narrow area around the optic disc. Glial cells coexist with the blood vessels being very numerous in the vascular region and become scanty in the avascular ones. S-100-positive astrocytes could be observed in these avascular areas. Ganglion cells are organized in a single layer with the least population existing in the peripheral retina. Acidic fibroblast growth factor (AFGF) is immunoreactive in amacrine and ganglion cells. A subpopulation of amacrine cells reacted strongly to tyrosine hydroxylase (TH), and others reacted positively to S-100 protein. Ganglion cell nuclei exhibited a strong immunoreactivity to S-100 protein as well. Furthermore, glial fibrillary acidic protein (GFAP) is used to identify Müller cells that extend their processes across the retina from the inner to the outer limiting membrane.</p><p><strong>Conclusions: </strong>In conclusion, our findings provide novel insights into the normal retinal organization. The donkey retina shows the characteristic expression of immunohistochemical markers for the major cell types. In addition, the distribution of glial cells is comparable between the vascular and avascular regions.</p>\",\"PeriodicalId\":9717,\"journal\":{\"name\":\"Cells Tissues Organs\",\"volume\":\" \",\"pages\":\"368-381\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cells Tissues Organs\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1159/000537688\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells Tissues Organs","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000537688","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

导言:眼部疾病是驴的一大健康隐患。然而,有关驴视网膜微观解剖和细胞群的研究却很少。本研究旨在描述驴视网膜的血管模式并记录其细胞成分:方法:从不同的视网膜区域获取驴视网膜标本,制备半切片并进行免疫组化:结果:驴的视网膜为毛细血管扩张型,视网膜血管局限于视盘周围的狭窄区域。神经胶质细胞与血管共存,血管区域的神经胶质细胞非常多,而无血管区域的神经胶质细胞则很少。在这些无血管区域可以观察到 S-100 阳性的星形胶质细胞。神经节细胞呈单层排列,周边视网膜的神经节细胞数量最少。酸性成纤维细胞生长因子(AFGF)在羊膜细胞和神经节细胞中具有免疫活性。羊膜细胞中的一个亚群对酪氨酸羟化酶(TH)有强烈反应,其他亚群则对 S-100 蛋白呈阳性反应。神经节细胞核对 S-100 蛋白也有很强的免疫反应。此外,胶质纤维酸性蛋白(GFAP)可用于识别Müller细胞,这些细胞的过程从视网膜内膜延伸至外缘膜:总之,我们的研究结果为了解正常视网膜的组织结构提供了新的视角。驴视网膜显示出主要细胞类型免疫组化标记物的特征性表达。此外,神经胶质细胞的分布在血管区和无血管区之间具有可比性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Morphological and Immunohistochemical Differentiation of Neuronal and Glial Cells of the Vascular and Avascular Regions of the Donkey's Paurangiotic Retina.

Introduction: Ocular diseases pose a significant health concern for donkeys. However, studies examining the microanatomy and cell populations of the donkey retina are scarce. The current study aimed to describe the vascular pattern of the donkey retina and document its cellular components.

Methods: The donkey retina specimens were obtained from different retinal regions and prepared for semithin sectioning and immunohistochemistry.

Results: The donkey has a paurangiotic retina in which retinal vessels are confined to a narrow area around the optic disc. Glial cells coexist with the blood vessels being very numerous in the vascular region and become scanty in the avascular ones. S-100-positive astrocytes could be observed in these avascular areas. Ganglion cells are organized in a single layer with the least population existing in the peripheral retina. Acidic fibroblast growth factor (AFGF) is immunoreactive in amacrine and ganglion cells. A subpopulation of amacrine cells reacted strongly to tyrosine hydroxylase (TH), and others reacted positively to S-100 protein. Ganglion cell nuclei exhibited a strong immunoreactivity to S-100 protein as well. Furthermore, glial fibrillary acidic protein (GFAP) is used to identify Müller cells that extend their processes across the retina from the inner to the outer limiting membrane.

Conclusions: In conclusion, our findings provide novel insights into the normal retinal organization. The donkey retina shows the characteristic expression of immunohistochemical markers for the major cell types. In addition, the distribution of glial cells is comparable between the vascular and avascular regions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cells Tissues Organs
Cells Tissues Organs 生物-发育生物学
CiteScore
4.90
自引率
3.70%
发文量
45
审稿时长
6-12 weeks
期刊介绍: ''Cells Tissues Organs'' aims at bridging the gap between cell biology and developmental biology and the emerging fields of regenerative medicine (stem cell biology, tissue engineering, artificial organs, in vitro systems and transplantation biology). CTO offers a rapid and fair peer-review and exquisite reproduction quality. Special topic issues, entire issues of the journal devoted to a single research topic within the range of interests of the journal, are published at irregular intervals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信