Andrew Brian O'Keeffe, Anca Merla, Keyoumars Ashkan
{"title":"眼下核深部脑刺激治疗帕金森病(2013-2023 年):再过 10 年,我们将何去何从?","authors":"Andrew Brian O'Keeffe, Anca Merla, Keyoumars Ashkan","doi":"10.1080/02688697.2024.2311128","DOIUrl":null,"url":null,"abstract":"<p><p>Deep brain stimulation has been in clinical use for 30 years and during that time it has changed markedly from a small-scale treatment employed by only a few highly specialized centers into a widespread keystone approach to the management of disorders such as Parkinson's disease. In the intervening decades, many of the broad principles of deep brain stimulation have remained unchanged, that of electrode insertion into stereotactically targeted brain nuclei, however the underlying technology and understanding around the approach have progressed markedly. Some of the most significant advances have taken place over the last decade with the advent of artificial intelligence, directional electrodes, stimulation/recording implantable pulse generators and the potential for remote programming among many other innovations. New therapeutic targets are being assessed for their potential benefits and a surge in the number of deep brain stimulation implantations has given birth to a flourishing scientific literature surrounding the pathophysiology of brain disorders such as Parkinson's disease. Here we outline the developments of the last decade and look to the future of deep brain stimulation to attempt to discern some of the most promising lines of inquiry in this fast-paced and rapidly evolving field.</p>","PeriodicalId":9261,"journal":{"name":"British Journal of Neurosurgery","volume":" ","pages":"603-611"},"PeriodicalIF":0.8000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep brain stimulation of the subthalamic nucleus in Parkinson disease 2013-2023: where are we a further 10 years on?\",\"authors\":\"Andrew Brian O'Keeffe, Anca Merla, Keyoumars Ashkan\",\"doi\":\"10.1080/02688697.2024.2311128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deep brain stimulation has been in clinical use for 30 years and during that time it has changed markedly from a small-scale treatment employed by only a few highly specialized centers into a widespread keystone approach to the management of disorders such as Parkinson's disease. In the intervening decades, many of the broad principles of deep brain stimulation have remained unchanged, that of electrode insertion into stereotactically targeted brain nuclei, however the underlying technology and understanding around the approach have progressed markedly. Some of the most significant advances have taken place over the last decade with the advent of artificial intelligence, directional electrodes, stimulation/recording implantable pulse generators and the potential for remote programming among many other innovations. New therapeutic targets are being assessed for their potential benefits and a surge in the number of deep brain stimulation implantations has given birth to a flourishing scientific literature surrounding the pathophysiology of brain disorders such as Parkinson's disease. Here we outline the developments of the last decade and look to the future of deep brain stimulation to attempt to discern some of the most promising lines of inquiry in this fast-paced and rapidly evolving field.</p>\",\"PeriodicalId\":9261,\"journal\":{\"name\":\"British Journal of Neurosurgery\",\"volume\":\" \",\"pages\":\"603-611\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Neurosurgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/02688697.2024.2311128\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Neurosurgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02688697.2024.2311128","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/7 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Deep brain stimulation of the subthalamic nucleus in Parkinson disease 2013-2023: where are we a further 10 years on?
Deep brain stimulation has been in clinical use for 30 years and during that time it has changed markedly from a small-scale treatment employed by only a few highly specialized centers into a widespread keystone approach to the management of disorders such as Parkinson's disease. In the intervening decades, many of the broad principles of deep brain stimulation have remained unchanged, that of electrode insertion into stereotactically targeted brain nuclei, however the underlying technology and understanding around the approach have progressed markedly. Some of the most significant advances have taken place over the last decade with the advent of artificial intelligence, directional electrodes, stimulation/recording implantable pulse generators and the potential for remote programming among many other innovations. New therapeutic targets are being assessed for their potential benefits and a surge in the number of deep brain stimulation implantations has given birth to a flourishing scientific literature surrounding the pathophysiology of brain disorders such as Parkinson's disease. Here we outline the developments of the last decade and look to the future of deep brain stimulation to attempt to discern some of the most promising lines of inquiry in this fast-paced and rapidly evolving field.
期刊介绍:
The British Journal of Neurosurgery is a leading international forum for debate in the field of neurosurgery, publishing original peer-reviewed articles of the highest quality, along with comment and correspondence on all topics of current interest to neurosurgeons worldwide.
Coverage includes all aspects of case assessment and surgical practice, as well as wide-ranging research, with an emphasis on clinical rather than experimental material. Special emphasis is placed on postgraduate education with review articles on basic neurosciences and on the theory behind advances in techniques, investigation and clinical management. All papers are submitted to rigorous and independent peer-review, ensuring the journal’s wide citation and its appearance in the major abstracting and indexing services.