{"title":"复合绝缘体动态污染积累过程的建模与仿真研究","authors":"Zhongyi Yang, Dongxiong Liu, Xiangjun Zeng, Caijin Fan, Xin Yang, Yafei Huang","doi":"10.1049/hve2.12413","DOIUrl":null,"url":null,"abstract":"<p>With the widespread application of composite insulators in transmission lines, exploring the accumulation mechanism of pollution particles on composite insulator surfaces is of importance to ensure the safe and steady operation of the power system. Addressing the current theoretical shortcomings, this study categorises the accumulation process of particles on the insulator surface into three stages, namely ‘spatial motion’, ‘surface collision’, and ‘surface motion’. The motion and rotation velocities in a multi-physics field are calculated in the spatial motion stage. In the surface collision stage, a parameter called ‘neck height’ is introduced to determine the optimum mechanics theory, and the normal deposition criterion is established. For the surface motion stage, the sliding displacement and rolling displacement on the surface are calculated based on the rotation speed of the particles. A dynamic pollution accumulation model of the composite insulator is established based on the normal deposition criterion and tangential displacement. Finally, numerical simulations are performed by using the finite element method. Simulation results show that the proposed model agrees with the actual insulator pollution accumulation, and the deposition model is still applicable for various types of composite insulators operating in different applied voltages. The deposition probability of particles increases with the increasing particle size. In the surface motion stage, particle displacement increases with particle size and wind velocity.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"9 3","pages":"601-613"},"PeriodicalIF":4.4000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12413","citationCount":"0","resultStr":"{\"title\":\"Modelling and simulation study on dynamic pollution accumulation process of composite insulator\",\"authors\":\"Zhongyi Yang, Dongxiong Liu, Xiangjun Zeng, Caijin Fan, Xin Yang, Yafei Huang\",\"doi\":\"10.1049/hve2.12413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the widespread application of composite insulators in transmission lines, exploring the accumulation mechanism of pollution particles on composite insulator surfaces is of importance to ensure the safe and steady operation of the power system. Addressing the current theoretical shortcomings, this study categorises the accumulation process of particles on the insulator surface into three stages, namely ‘spatial motion’, ‘surface collision’, and ‘surface motion’. The motion and rotation velocities in a multi-physics field are calculated in the spatial motion stage. In the surface collision stage, a parameter called ‘neck height’ is introduced to determine the optimum mechanics theory, and the normal deposition criterion is established. For the surface motion stage, the sliding displacement and rolling displacement on the surface are calculated based on the rotation speed of the particles. A dynamic pollution accumulation model of the composite insulator is established based on the normal deposition criterion and tangential displacement. Finally, numerical simulations are performed by using the finite element method. Simulation results show that the proposed model agrees with the actual insulator pollution accumulation, and the deposition model is still applicable for various types of composite insulators operating in different applied voltages. The deposition probability of particles increases with the increasing particle size. In the surface motion stage, particle displacement increases with particle size and wind velocity.</p>\",\"PeriodicalId\":48649,\"journal\":{\"name\":\"High Voltage\",\"volume\":\"9 3\",\"pages\":\"601-613\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12413\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Voltage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/hve2.12413\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/hve2.12413","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Modelling and simulation study on dynamic pollution accumulation process of composite insulator
With the widespread application of composite insulators in transmission lines, exploring the accumulation mechanism of pollution particles on composite insulator surfaces is of importance to ensure the safe and steady operation of the power system. Addressing the current theoretical shortcomings, this study categorises the accumulation process of particles on the insulator surface into three stages, namely ‘spatial motion’, ‘surface collision’, and ‘surface motion’. The motion and rotation velocities in a multi-physics field are calculated in the spatial motion stage. In the surface collision stage, a parameter called ‘neck height’ is introduced to determine the optimum mechanics theory, and the normal deposition criterion is established. For the surface motion stage, the sliding displacement and rolling displacement on the surface are calculated based on the rotation speed of the particles. A dynamic pollution accumulation model of the composite insulator is established based on the normal deposition criterion and tangential displacement. Finally, numerical simulations are performed by using the finite element method. Simulation results show that the proposed model agrees with the actual insulator pollution accumulation, and the deposition model is still applicable for various types of composite insulators operating in different applied voltages. The deposition probability of particles increases with the increasing particle size. In the surface motion stage, particle displacement increases with particle size and wind velocity.
High VoltageEnergy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍:
High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include:
Electrical Insulation
● Outdoor, indoor, solid, liquid and gas insulation
● Transient voltages and overvoltage protection
● Nano-dielectrics and new insulation materials
● Condition monitoring and maintenance
Discharge and plasmas, pulsed power
● Electrical discharge, plasma generation and applications
● Interactions of plasma with surfaces
● Pulsed power science and technology
High-field effects
● Computation, measurements of Intensive Electromagnetic Field
● Electromagnetic compatibility
● Biomedical effects
● Environmental effects and protection
High Voltage Engineering
● Design problems, testing and measuring techniques
● Equipment development and asset management
● Smart Grid, live line working
● AC/DC power electronics
● UHV power transmission
Special Issues. Call for papers:
Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf
Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf