Tianyun Zhang;Jun Zhang;Feiyue Wang;Peidong Xu;Tianlu Gao;Haoran Zhang;Ruiqi Si
{"title":"基于并行系统的有功功率校正控制人工智能量化评估与自我进化","authors":"Tianyun Zhang;Jun Zhang;Feiyue Wang;Peidong Xu;Tianlu Gao;Haoran Zhang;Ruiqi Si","doi":"10.17775/CSEEJPES.2023.00190","DOIUrl":null,"url":null,"abstract":"In artificial intelligence (AI) based-complex power system management and control technology, one of the urgent tasks is to evaluate AI intelligence and invent a way of autonomous intelligence evolution. However, there is, currently, nearly no standard technical framework for objective and quantitative intelligence evaluation. In this article, based on a parallel system framework, a method is established to objectively and quantitatively assess the intelligence level of an AI agent for active power corrective control of modern power systems, by resorting to human intelligence evaluation theories. On this basis, this article puts forward an AI self-evolution method based on intelligence assessment through embedding a quantitative intelligence assessment method into automated reinforcement learning (AutoRL) systems. A parallel system based quantitative assessment and self-evolution (PLASE) system for power grid corrective control AI is thereby constructed, taking Bayesian Optimization as the measure of AI evolution to fulfill autonomous evolution of AI under guidance of their intelligence assessment results. Experiment results exemplified in the power grid corrective control AI agent show the PLASE system can reliably and quantitatively assess the intelligence level of the power grid corrective control agent, and it could promote evolution of the power grid corrective control agent under guidance of intelligence assessment results, effectively, as well as intuitively improving its intelligence level through self-evolution.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 1","pages":"13-28"},"PeriodicalIF":6.9000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10375965","citationCount":"0","resultStr":"{\"title\":\"Parallel System Based Quantitative Assessment and Self-evolution for Artificial Intelligence of Active Power Corrective Control\",\"authors\":\"Tianyun Zhang;Jun Zhang;Feiyue Wang;Peidong Xu;Tianlu Gao;Haoran Zhang;Ruiqi Si\",\"doi\":\"10.17775/CSEEJPES.2023.00190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In artificial intelligence (AI) based-complex power system management and control technology, one of the urgent tasks is to evaluate AI intelligence and invent a way of autonomous intelligence evolution. However, there is, currently, nearly no standard technical framework for objective and quantitative intelligence evaluation. In this article, based on a parallel system framework, a method is established to objectively and quantitatively assess the intelligence level of an AI agent for active power corrective control of modern power systems, by resorting to human intelligence evaluation theories. On this basis, this article puts forward an AI self-evolution method based on intelligence assessment through embedding a quantitative intelligence assessment method into automated reinforcement learning (AutoRL) systems. A parallel system based quantitative assessment and self-evolution (PLASE) system for power grid corrective control AI is thereby constructed, taking Bayesian Optimization as the measure of AI evolution to fulfill autonomous evolution of AI under guidance of their intelligence assessment results. Experiment results exemplified in the power grid corrective control AI agent show the PLASE system can reliably and quantitatively assess the intelligence level of the power grid corrective control agent, and it could promote evolution of the power grid corrective control agent under guidance of intelligence assessment results, effectively, as well as intuitively improving its intelligence level through self-evolution.\",\"PeriodicalId\":10729,\"journal\":{\"name\":\"CSEE Journal of Power and Energy Systems\",\"volume\":\"10 1\",\"pages\":\"13-28\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10375965\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CSEE Journal of Power and Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10375965/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSEE Journal of Power and Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10375965/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Parallel System Based Quantitative Assessment and Self-evolution for Artificial Intelligence of Active Power Corrective Control
In artificial intelligence (AI) based-complex power system management and control technology, one of the urgent tasks is to evaluate AI intelligence and invent a way of autonomous intelligence evolution. However, there is, currently, nearly no standard technical framework for objective and quantitative intelligence evaluation. In this article, based on a parallel system framework, a method is established to objectively and quantitatively assess the intelligence level of an AI agent for active power corrective control of modern power systems, by resorting to human intelligence evaluation theories. On this basis, this article puts forward an AI self-evolution method based on intelligence assessment through embedding a quantitative intelligence assessment method into automated reinforcement learning (AutoRL) systems. A parallel system based quantitative assessment and self-evolution (PLASE) system for power grid corrective control AI is thereby constructed, taking Bayesian Optimization as the measure of AI evolution to fulfill autonomous evolution of AI under guidance of their intelligence assessment results. Experiment results exemplified in the power grid corrective control AI agent show the PLASE system can reliably and quantitatively assess the intelligence level of the power grid corrective control agent, and it could promote evolution of the power grid corrective control agent under guidance of intelligence assessment results, effectively, as well as intuitively improving its intelligence level through self-evolution.
期刊介绍:
The CSEE Journal of Power and Energy Systems (JPES) is an international bimonthly journal published by the Chinese Society for Electrical Engineering (CSEE) in collaboration with CEPRI (China Electric Power Research Institute) and IEEE (The Institute of Electrical and Electronics Engineers) Inc. Indexed by SCI, Scopus, INSPEC, CSAD (Chinese Science Abstracts Database), DOAJ, and ProQuest, it serves as a platform for reporting cutting-edge theories, methods, technologies, and applications shaping the development of power systems in energy transition. The journal offers authors an international platform to enhance the reach and impact of their contributions.