持续低强度超声波可改善软骨下损伤兔模型的软骨修复。

IF 3.5 3区 医学 Q3 CELL & TISSUE ENGINEERING
Tissue Engineering Part A Pub Date : 2024-04-01 Epub Date: 2024-03-01 DOI:10.1089/ten.TEA.2023.0246
Anuradha Subramanian, Sarayu Bhogoju, Oraine Snaith, April D Miller, Heather Newell, Denzhi Wang, Gene Siegal, Katelin Oborny, Jesse Baumann-Berg, Hendrik Viljoen
{"title":"持续低强度超声波可改善软骨下损伤兔模型的软骨修复。","authors":"Anuradha Subramanian, Sarayu Bhogoju, Oraine Snaith, April D Miller, Heather Newell, Denzhi Wang, Gene Siegal, Katelin Oborny, Jesse Baumann-Berg, Hendrik Viljoen","doi":"10.1089/ten.TEA.2023.0246","DOIUrl":null,"url":null,"abstract":"<p><p>Subchondral drilling (SD), a bone marrow stimulation technique, is used to repair cartilage lesions that lack regenerative potential. Cartilage repair outcomes upon SD are typically fibrocartilaginous in nature with inferior functionality. The lack of cues to foster the chondrogenic differentiation of egressed mesenchymal stromal cells upon SD can be attributed for the poor outcomes. Continuous low-intensity ultrasound (cLIUS) at 3.8 MHz is proposed as a treatment modality for improving cartilage repair outcomes upon marrow stimulation. Bilateral defects were created by SD on the femoral medial condyle of female New Zealand white rabbits (<i>n</i> = 12), and the left joint received cLIUS treatment (3.8 MHz, 3.5 Vpp, 8 min/application/day) and the contralateral right joint served as the control. On day 7 postsurgery, synovial fluid was aspirated, and the cytokine levels were assessed by Quantibody™ assay. Rabbits were euthanized at 8 weeks and outcomes were assessed macroscopically and histologically. Defect areas in the right joints exhibited boundaries, incomplete fill, irregular cartilage surfaces, loss of glycosaminoglycan (GAG), and absence of chondrocytes. In contrast, the repaired defect area in the joints that received cLIUS showed complete fill, positive staining for GAG with rounded chondrocyte morphology, COL2A1 staining, and columnar organization. Synovial fluid collected from cLIUS-treated left knee joints had lower levels of IL1, TNFα, and IFNγ when compared to untreated right knee joints, alluding to the potential of cLIUS to mitigate early inflammation. Further at 8 weeks, left knee joints (<i>n</i> = 12) consistently scored higher on the O'Driscoll scale, with a higher percent hyaline cartilage score. No adverse impact on bone or change in the joint space was noted. Upon a single exposure of cLIUS to TNFα-treated cells, nuclear localization of pNFκB and SOX9 was visualized by double immunofluorescence and the expression of markers associated with the NFκB pathway was assayed by quantitative real-time polymerase chain reaction. cLIUS extends its chondroprotective effects by titrating pNFκB levels, preventing its nuclear translocation, while maintaining the expression of SOX9, the collagen II transcription factor. Our combined results demonstrate that healing of chondral defects treated with marrow stimulation by SD can be accelerated by employing cLIUS regimen that possesses chondroinductive and chondroprotective properties. Impact statement Repair of cartilage represents an unsolved biomedical burden. <i>In vitro</i>, continuous low-intensity ultrasound (cLIUS) has been demonstrated to possess chondroinductive and chondroprotective potential. To our best knowledge, the use of cLIUS to improve cartilage repair outcomes upon marrow stimulation, <i>in vivo</i>, has not been reported and our work reported here fills that gap. Our results demonstrated enhanced cartilage repair outcomes under cLIUS (3.8 MHz) in a rabbit model of subchondral injury by subchondral drilling. Enhanced repair stemmed from mesenchymal stem cell differentiation <i>in vivo</i> and the subsequent synthesis of articular cartilage-specific matrix.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11040182/pdf/","citationCount":"0","resultStr":"{\"title\":\"Continuous Low-Intensity Ultrasound Improves Cartilage Repair in Rabbit Model of Subchondral Injury.\",\"authors\":\"Anuradha Subramanian, Sarayu Bhogoju, Oraine Snaith, April D Miller, Heather Newell, Denzhi Wang, Gene Siegal, Katelin Oborny, Jesse Baumann-Berg, Hendrik Viljoen\",\"doi\":\"10.1089/ten.TEA.2023.0246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Subchondral drilling (SD), a bone marrow stimulation technique, is used to repair cartilage lesions that lack regenerative potential. Cartilage repair outcomes upon SD are typically fibrocartilaginous in nature with inferior functionality. The lack of cues to foster the chondrogenic differentiation of egressed mesenchymal stromal cells upon SD can be attributed for the poor outcomes. Continuous low-intensity ultrasound (cLIUS) at 3.8 MHz is proposed as a treatment modality for improving cartilage repair outcomes upon marrow stimulation. Bilateral defects were created by SD on the femoral medial condyle of female New Zealand white rabbits (<i>n</i> = 12), and the left joint received cLIUS treatment (3.8 MHz, 3.5 Vpp, 8 min/application/day) and the contralateral right joint served as the control. On day 7 postsurgery, synovial fluid was aspirated, and the cytokine levels were assessed by Quantibody™ assay. Rabbits were euthanized at 8 weeks and outcomes were assessed macroscopically and histologically. Defect areas in the right joints exhibited boundaries, incomplete fill, irregular cartilage surfaces, loss of glycosaminoglycan (GAG), and absence of chondrocytes. In contrast, the repaired defect area in the joints that received cLIUS showed complete fill, positive staining for GAG with rounded chondrocyte morphology, COL2A1 staining, and columnar organization. Synovial fluid collected from cLIUS-treated left knee joints had lower levels of IL1, TNFα, and IFNγ when compared to untreated right knee joints, alluding to the potential of cLIUS to mitigate early inflammation. Further at 8 weeks, left knee joints (<i>n</i> = 12) consistently scored higher on the O'Driscoll scale, with a higher percent hyaline cartilage score. No adverse impact on bone or change in the joint space was noted. Upon a single exposure of cLIUS to TNFα-treated cells, nuclear localization of pNFκB and SOX9 was visualized by double immunofluorescence and the expression of markers associated with the NFκB pathway was assayed by quantitative real-time polymerase chain reaction. cLIUS extends its chondroprotective effects by titrating pNFκB levels, preventing its nuclear translocation, while maintaining the expression of SOX9, the collagen II transcription factor. Our combined results demonstrate that healing of chondral defects treated with marrow stimulation by SD can be accelerated by employing cLIUS regimen that possesses chondroinductive and chondroprotective properties. Impact statement Repair of cartilage represents an unsolved biomedical burden. <i>In vitro</i>, continuous low-intensity ultrasound (cLIUS) has been demonstrated to possess chondroinductive and chondroprotective potential. To our best knowledge, the use of cLIUS to improve cartilage repair outcomes upon marrow stimulation, <i>in vivo</i>, has not been reported and our work reported here fills that gap. Our results demonstrated enhanced cartilage repair outcomes under cLIUS (3.8 MHz) in a rabbit model of subchondral injury by subchondral drilling. Enhanced repair stemmed from mesenchymal stem cell differentiation <i>in vivo</i> and the subsequent synthesis of articular cartilage-specific matrix.</p>\",\"PeriodicalId\":56375,\"journal\":{\"name\":\"Tissue Engineering Part A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11040182/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Engineering Part A\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.TEA.2023.0246\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering Part A","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEA.2023.0246","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

软骨下钻孔(SD)是一种骨髓刺激技术,用于修复缺乏再生潜力的软骨损伤。软骨下钻孔术的软骨修复结果通常是纤维软骨化,功能较差。间充质干细胞(MSCs)脱落后,由于缺乏促进软骨分化的线索,导致修复效果不佳。3.8兆赫的连续低强度超声(cLIUS)被认为是改善骨髓刺激软骨修复效果的一种治疗方式。通过 SD 在雌性新西兰白兔(n=12)的股骨内侧髁上创建双侧缺损,左侧关节接受 cLIUS 治疗(3.8 MHz,3.5 Vpp,8 分钟/次/天),对侧右侧关节作为对照。术后第 7 天,抽取滑液,用 Quantibody™ 检测法评估细胞因子水平。兔子在 8 周后被安乐死,并对结果进行了宏观和组织学评估。右侧关节的缺损区呈现边界、不完全填充、软骨表面不规则、糖胺聚糖(GAG)缺失和软骨细胞缺失。相比之下,接受cLIUS修复的关节缺损区显示出完全填充、GAG阳性染色、圆形软骨细胞形态、COL2A1染色和柱状组织。与未接受治疗的右膝关节相比,从接受过cLIUS治疗的左膝关节采集的滑膜液中IL1、TNFα和IFNγ水平较低,这表明cLIUS具有减轻早期炎症的潜力。此外,在8周时,左膝关节(12个)在O "Driscoll量表上的得分一直较高;透明软骨的百分比得分也较高。没有发现对骨骼有不良影响或关节间隙有变化。将 cLIUS 单次暴露于 TNFα 处理过的细胞后,通过双重免疫荧光可观察到 pNFκB 和 SOX9 的核定位,并通过 qRT-PCR 检测与 NFκB 通路相关的标记物的表达。我们的综合结果表明,采用具有软骨诱导和软骨保护特性的 cLIUS 方案可以加速通过 SD 刺激骨髓治疗的软骨缺损的愈合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuous Low-Intensity Ultrasound Improves Cartilage Repair in Rabbit Model of Subchondral Injury.

Subchondral drilling (SD), a bone marrow stimulation technique, is used to repair cartilage lesions that lack regenerative potential. Cartilage repair outcomes upon SD are typically fibrocartilaginous in nature with inferior functionality. The lack of cues to foster the chondrogenic differentiation of egressed mesenchymal stromal cells upon SD can be attributed for the poor outcomes. Continuous low-intensity ultrasound (cLIUS) at 3.8 MHz is proposed as a treatment modality for improving cartilage repair outcomes upon marrow stimulation. Bilateral defects were created by SD on the femoral medial condyle of female New Zealand white rabbits (n = 12), and the left joint received cLIUS treatment (3.8 MHz, 3.5 Vpp, 8 min/application/day) and the contralateral right joint served as the control. On day 7 postsurgery, synovial fluid was aspirated, and the cytokine levels were assessed by Quantibody™ assay. Rabbits were euthanized at 8 weeks and outcomes were assessed macroscopically and histologically. Defect areas in the right joints exhibited boundaries, incomplete fill, irregular cartilage surfaces, loss of glycosaminoglycan (GAG), and absence of chondrocytes. In contrast, the repaired defect area in the joints that received cLIUS showed complete fill, positive staining for GAG with rounded chondrocyte morphology, COL2A1 staining, and columnar organization. Synovial fluid collected from cLIUS-treated left knee joints had lower levels of IL1, TNFα, and IFNγ when compared to untreated right knee joints, alluding to the potential of cLIUS to mitigate early inflammation. Further at 8 weeks, left knee joints (n = 12) consistently scored higher on the O'Driscoll scale, with a higher percent hyaline cartilage score. No adverse impact on bone or change in the joint space was noted. Upon a single exposure of cLIUS to TNFα-treated cells, nuclear localization of pNFκB and SOX9 was visualized by double immunofluorescence and the expression of markers associated with the NFκB pathway was assayed by quantitative real-time polymerase chain reaction. cLIUS extends its chondroprotective effects by titrating pNFκB levels, preventing its nuclear translocation, while maintaining the expression of SOX9, the collagen II transcription factor. Our combined results demonstrate that healing of chondral defects treated with marrow stimulation by SD can be accelerated by employing cLIUS regimen that possesses chondroinductive and chondroprotective properties. Impact statement Repair of cartilage represents an unsolved biomedical burden. In vitro, continuous low-intensity ultrasound (cLIUS) has been demonstrated to possess chondroinductive and chondroprotective potential. To our best knowledge, the use of cLIUS to improve cartilage repair outcomes upon marrow stimulation, in vivo, has not been reported and our work reported here fills that gap. Our results demonstrated enhanced cartilage repair outcomes under cLIUS (3.8 MHz) in a rabbit model of subchondral injury by subchondral drilling. Enhanced repair stemmed from mesenchymal stem cell differentiation in vivo and the subsequent synthesis of articular cartilage-specific matrix.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue Engineering Part A
Tissue Engineering Part A Chemical Engineering-Bioengineering
CiteScore
9.20
自引率
2.40%
发文量
163
审稿时长
3 months
期刊介绍: Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信