探索作为帕金森病模型的秀丽隐杆线虫:神经毒素和遗传学意义。

IF 2.9 3区 医学 Q2 NEUROSCIENCES
Larissa Pereira Dantas da Silva, Erika da Cruz Guedes, Isabel Cristina Oliveira Fernandes, Lucas Aleixo Leal Pedroza, Gustavo José da Silva Pereira, Priscila Gubert
{"title":"探索作为帕金森病模型的秀丽隐杆线虫:神经毒素和遗传学意义。","authors":"Larissa Pereira Dantas da Silva, Erika da Cruz Guedes, Isabel Cristina Oliveira Fernandes, Lucas Aleixo Leal Pedroza, Gustavo José da Silva Pereira, Priscila Gubert","doi":"10.1007/s12640-024-00686-3","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is the second most common neurodegenerative disease in the world, the first being Alzheimer's disease. Patients with PD have a loss of dopaminergic neurons in the substantia nigra of the basal ganglia, which controls voluntary movements, causing a motor impairment as a result of dopaminergic signaling impairment. Studies have shown that mutations in several genes, such as SNCA, PARK2, PINK1, DJ-1, ATP13A2, and LRRK2, and the exposure to neurotoxic agents can potentially increase the chances of PD development. The nematode Caenorhabditis elegans (C. elegans) plays an important role in studying the risk factors, such as genetic factors, aging, exposure to chemicals, disease progression, and drug treatments for PD. C. elegans has a conserved neurotransmission system during evolution; it produces dopamine, through the eight dopaminergic neurons; it can be used to study the effect of neurotoxins and also has strains that express human α-synuclein. Furthermore, the human PD-related genes, LRK-1, PINK-1, PDR-1, DJR-1.1, and CATP-6, are present and functional in this model. Therefore, this review focuses on highlighting and discussing the use of C. elegans an in vivo model in PD-related studies. Here, we identified that nematodes exposed to the neurotoxins, such as 6-OHDA, MPTP, paraquat, and rotenone, had a progressive loss of dopaminergic neurons, dopamine deficits, and decreased survival rate. Several studies have reported that expression of human LRRK2 (G2019S) caused neurodegeneration and pink-1, pdr-1, and djr-1.1 deletion caused several effects PD-related in C. elegans, including mitochondrial dysfunctions. Of note, the deletion of catp-6 in nematodes caused behavioral dysfunction, mitochondrial damage, and reduced survival. In addition, nematodes expressing α-synuclein had neurodegeneration and dopamine-dependent deficits. Therefore, C. elegans can be considered an accurate animal model of PD that can be used to elucidate to assess the underlying mechanisms implicated in PD to find novel therapeutic targets.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 1","pages":"11"},"PeriodicalIF":2.9000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Caenorhabditis elegans as Parkinson's Disease Model: Neurotoxins and Genetic Implications.\",\"authors\":\"Larissa Pereira Dantas da Silva, Erika da Cruz Guedes, Isabel Cristina Oliveira Fernandes, Lucas Aleixo Leal Pedroza, Gustavo José da Silva Pereira, Priscila Gubert\",\"doi\":\"10.1007/s12640-024-00686-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parkinson's disease (PD) is the second most common neurodegenerative disease in the world, the first being Alzheimer's disease. Patients with PD have a loss of dopaminergic neurons in the substantia nigra of the basal ganglia, which controls voluntary movements, causing a motor impairment as a result of dopaminergic signaling impairment. Studies have shown that mutations in several genes, such as SNCA, PARK2, PINK1, DJ-1, ATP13A2, and LRRK2, and the exposure to neurotoxic agents can potentially increase the chances of PD development. The nematode Caenorhabditis elegans (C. elegans) plays an important role in studying the risk factors, such as genetic factors, aging, exposure to chemicals, disease progression, and drug treatments for PD. C. elegans has a conserved neurotransmission system during evolution; it produces dopamine, through the eight dopaminergic neurons; it can be used to study the effect of neurotoxins and also has strains that express human α-synuclein. Furthermore, the human PD-related genes, LRK-1, PINK-1, PDR-1, DJR-1.1, and CATP-6, are present and functional in this model. Therefore, this review focuses on highlighting and discussing the use of C. elegans an in vivo model in PD-related studies. Here, we identified that nematodes exposed to the neurotoxins, such as 6-OHDA, MPTP, paraquat, and rotenone, had a progressive loss of dopaminergic neurons, dopamine deficits, and decreased survival rate. Several studies have reported that expression of human LRRK2 (G2019S) caused neurodegeneration and pink-1, pdr-1, and djr-1.1 deletion caused several effects PD-related in C. elegans, including mitochondrial dysfunctions. Of note, the deletion of catp-6 in nematodes caused behavioral dysfunction, mitochondrial damage, and reduced survival. In addition, nematodes expressing α-synuclein had neurodegeneration and dopamine-dependent deficits. Therefore, C. elegans can be considered an accurate animal model of PD that can be used to elucidate to assess the underlying mechanisms implicated in PD to find novel therapeutic targets.</p>\",\"PeriodicalId\":19193,\"journal\":{\"name\":\"Neurotoxicity Research\",\"volume\":\"42 1\",\"pages\":\"11\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurotoxicity Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12640-024-00686-3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicity Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12640-024-00686-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

帕金森病(PD)是世界上第二大最常见的神经退行性疾病,第一大疾病是阿尔茨海默病。帕金森病患者的基底神经节黑质中控制自主运动的多巴胺能神经元缺失,多巴胺能信号传导受损导致运动功能障碍。研究表明,SNCA、PARK2、PINK1、DJ-1、ATP13A2 和 LRRK2 等多个基因的突变,以及暴露于神经毒剂,都有可能增加帕金森病的发病几率。线虫秀丽隐杆线虫(C. elegans)在研究风险因素(如遗传因素、衰老、化学物质暴露、疾病进展和对帕金森病的药物治疗)方面发挥着重要作用。elegans 在进化过程中具有保守的神经传递系统;它通过八个多巴胺能神经元产生多巴胺;它可用于研究神经毒素的影响,也有表达人类α-突触核蛋白的品系。此外,与人类帕金森病相关的基因 LRK-1、PINK-1、PDR-1、DJR-1.1 和 CATP-6 也在该模型中存在并发挥功能。因此,本综述重点强调并讨论了在与帕金森病相关的研究中使用线虫作为体内模型的情况。在这里,我们发现线虫暴露于神经毒素(如 6-OHDA、MPTP、百草枯和鱼藤酮)后,多巴胺能神经元逐渐丧失,多巴胺功能障碍,存活率下降。一些研究报告指出,人 LRRK2(G2019S)的表达会导致神经退行性变,pink-1、pdr-1 和 djr-1.1 的缺失会导致优雅小鼠出现与帕金森病相关的几种效应,包括线粒体功能障碍。值得注意的是,在线虫中缺失 catp-6 会导致行为功能障碍、线粒体损伤和存活率降低。此外,表达α-突触核蛋白的线虫会出现神经变性和多巴胺依赖性缺陷。因此,线虫可被视为一种准确的帕金森病动物模型,可用于阐明和评估帕金森病的潜在机制,从而找到新的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exploring Caenorhabditis elegans as Parkinson's Disease Model: Neurotoxins and Genetic Implications.

Exploring Caenorhabditis elegans as Parkinson's Disease Model: Neurotoxins and Genetic Implications.

Parkinson's disease (PD) is the second most common neurodegenerative disease in the world, the first being Alzheimer's disease. Patients with PD have a loss of dopaminergic neurons in the substantia nigra of the basal ganglia, which controls voluntary movements, causing a motor impairment as a result of dopaminergic signaling impairment. Studies have shown that mutations in several genes, such as SNCA, PARK2, PINK1, DJ-1, ATP13A2, and LRRK2, and the exposure to neurotoxic agents can potentially increase the chances of PD development. The nematode Caenorhabditis elegans (C. elegans) plays an important role in studying the risk factors, such as genetic factors, aging, exposure to chemicals, disease progression, and drug treatments for PD. C. elegans has a conserved neurotransmission system during evolution; it produces dopamine, through the eight dopaminergic neurons; it can be used to study the effect of neurotoxins and also has strains that express human α-synuclein. Furthermore, the human PD-related genes, LRK-1, PINK-1, PDR-1, DJR-1.1, and CATP-6, are present and functional in this model. Therefore, this review focuses on highlighting and discussing the use of C. elegans an in vivo model in PD-related studies. Here, we identified that nematodes exposed to the neurotoxins, such as 6-OHDA, MPTP, paraquat, and rotenone, had a progressive loss of dopaminergic neurons, dopamine deficits, and decreased survival rate. Several studies have reported that expression of human LRRK2 (G2019S) caused neurodegeneration and pink-1, pdr-1, and djr-1.1 deletion caused several effects PD-related in C. elegans, including mitochondrial dysfunctions. Of note, the deletion of catp-6 in nematodes caused behavioral dysfunction, mitochondrial damage, and reduced survival. In addition, nematodes expressing α-synuclein had neurodegeneration and dopamine-dependent deficits. Therefore, C. elegans can be considered an accurate animal model of PD that can be used to elucidate to assess the underlying mechanisms implicated in PD to find novel therapeutic targets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurotoxicity Research
Neurotoxicity Research 医学-神经科学
CiteScore
7.70
自引率
5.40%
发文量
164
审稿时长
6-12 weeks
期刊介绍: Neurotoxicity Research is an international, interdisciplinary broad-based journal for reporting both basic and clinical research on classical neurotoxicity effects and mechanisms associated with neurodegeneration, necrosis, neuronal apoptosis, nerve regeneration, neurotrophin mechanisms, and topics related to these themes. Published papers have focused on: NEURODEGENERATION and INJURY Neuropathologies Neuronal apoptosis Neuronal necrosis Neural death processes (anatomical, histochemical, neurochemical) Neurodegenerative Disorders Neural Effects of Substances of Abuse NERVE REGENERATION and RESPONSES TO INJURY Neural Adaptations Neurotrophin mechanisms and actions NEURO(CYTO)TOXICITY PROCESSES and NEUROPROTECTION Excitatory amino acids Neurotoxins, endogenous and synthetic Reactive oxygen (nitrogen) species Neuroprotection by endogenous and exogenous agents Papers on related themes are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信