{"title":"氧化双吲哚基两性探针用于水介质中重金属污染物的双模式分析","authors":"Animesh Pal, Nilanjan Dey","doi":"10.1007/s10895-023-03393-y","DOIUrl":null,"url":null,"abstract":"<p><p>The oxidized bisindolyl-based amphiphilic, chromogenic probe has been synthesized that can form nanoscopic aggregates in the aqueous medium. Along with solvent polarity and pH of the medium, it was observed that the addition of heavy metal pollutants, like Hg<sup>2+</sup> can cause significant alteration in the charge transfer state. This resulted in the immediate change in the solution color from yellow to orange. Additionally, we could excite either the monomer species or the aggregates of the probe by choosing the proper excitation wavelength. Upon exciting at 390 nm, the compound exhibited a broad fluorescence spectrum with maxima at 450 nm, presumably due to twisted state charge transfer. On the contrary, the aggregated species (λex = 465 nm) displayed a comparatively weaker fluorescence band centered at 565 nm. Interestingly, the fluorescence intensity at the 450 nm band experience fluorescence quenching in the presence of Hg<sup>2+</sup> ion, while the aggregate emission band remained unaffected. Finally, the present system was utilized for detection of mercury ions in natural water samples.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":"1335-1344"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxidized Bisindolyl-Based Amphiphilic Probe for Dual Mode Analysis of Heavy Metal Pollutants in Aqueous Medium.\",\"authors\":\"Animesh Pal, Nilanjan Dey\",\"doi\":\"10.1007/s10895-023-03393-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The oxidized bisindolyl-based amphiphilic, chromogenic probe has been synthesized that can form nanoscopic aggregates in the aqueous medium. Along with solvent polarity and pH of the medium, it was observed that the addition of heavy metal pollutants, like Hg<sup>2+</sup> can cause significant alteration in the charge transfer state. This resulted in the immediate change in the solution color from yellow to orange. Additionally, we could excite either the monomer species or the aggregates of the probe by choosing the proper excitation wavelength. Upon exciting at 390 nm, the compound exhibited a broad fluorescence spectrum with maxima at 450 nm, presumably due to twisted state charge transfer. On the contrary, the aggregated species (λex = 465 nm) displayed a comparatively weaker fluorescence band centered at 565 nm. Interestingly, the fluorescence intensity at the 450 nm band experience fluorescence quenching in the presence of Hg<sup>2+</sup> ion, while the aggregate emission band remained unaffected. Finally, the present system was utilized for detection of mercury ions in natural water samples.</p>\",\"PeriodicalId\":15800,\"journal\":{\"name\":\"Journal of Fluorescence\",\"volume\":\" \",\"pages\":\"1335-1344\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluorescence\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s10895-023-03393-y\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-023-03393-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Oxidized Bisindolyl-Based Amphiphilic Probe for Dual Mode Analysis of Heavy Metal Pollutants in Aqueous Medium.
The oxidized bisindolyl-based amphiphilic, chromogenic probe has been synthesized that can form nanoscopic aggregates in the aqueous medium. Along with solvent polarity and pH of the medium, it was observed that the addition of heavy metal pollutants, like Hg2+ can cause significant alteration in the charge transfer state. This resulted in the immediate change in the solution color from yellow to orange. Additionally, we could excite either the monomer species or the aggregates of the probe by choosing the proper excitation wavelength. Upon exciting at 390 nm, the compound exhibited a broad fluorescence spectrum with maxima at 450 nm, presumably due to twisted state charge transfer. On the contrary, the aggregated species (λex = 465 nm) displayed a comparatively weaker fluorescence band centered at 565 nm. Interestingly, the fluorescence intensity at the 450 nm band experience fluorescence quenching in the presence of Hg2+ ion, while the aggregate emission band remained unaffected. Finally, the present system was utilized for detection of mercury ions in natural water samples.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.