Cecilia Björnfot, Anders Eklund, Jenny Larsson, William Hansson, Johan Birnefeld, Anders Garpebring, Sara Qvarlander, Lars-Owe D Koskinen, Jan Malm, Anders Wåhlin
{"title":"脑动脉僵化与老年人白质高密度和血管周围间隙有关--4D 流磁共振成像研究。","authors":"Cecilia Björnfot, Anders Eklund, Jenny Larsson, William Hansson, Johan Birnefeld, Anders Garpebring, Sara Qvarlander, Lars-Owe D Koskinen, Jan Malm, Anders Wåhlin","doi":"10.1177/0271678X241230741","DOIUrl":null,"url":null,"abstract":"<p><p>White matter hyperintensities (WMH), perivascular spaces (PVS) and lacunes are common MRI features of small vessel disease (SVD). However, no shared underlying pathological mechanism has been identified. We investigated whether SVD burden, in terms of WMH, PVS and lacune status, was related to changes in the cerebral arterial wall by applying global cerebral pulse wave velocity (gcPWV) measurements, a newly described marker of cerebral vascular stiffness. In a population-based cohort of 190 individuals, 66-85 years old, SVD features were estimated from T1-weighted and FLAIR images while gcPWV was estimated from 4D flow MRI data. Additionally, the gcPWV's stability to variations in field-of-view was analyzed. The gcPWV was 10.82 (3.94) m/s and displayed a significant correlation to WMH and white matter PVS volume (r = 0.29, p < 0.001; r = 0.21, p = 0.004 respectively from nonparametric tests) that persisted after adjusting for age, blood pressure variables, body mass index, ApoB/A1 ratio, smoking as well as cerebral pulsatility index, a previously suggested early marker of SVD. The gcPWV displayed satisfactory stability to field-of-view variations. Our results suggest that SVD is accompanied by changes in the cerebral arterial wall that can be captured by considering the velocity of the pulse wave transmission through the cerebral arterial network.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"1343-1351"},"PeriodicalIF":4.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11342729/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cerebral arterial stiffness is linked to white matter hyperintensities and perivascular spaces in older adults - A 4D flow MRI study.\",\"authors\":\"Cecilia Björnfot, Anders Eklund, Jenny Larsson, William Hansson, Johan Birnefeld, Anders Garpebring, Sara Qvarlander, Lars-Owe D Koskinen, Jan Malm, Anders Wåhlin\",\"doi\":\"10.1177/0271678X241230741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>White matter hyperintensities (WMH), perivascular spaces (PVS) and lacunes are common MRI features of small vessel disease (SVD). However, no shared underlying pathological mechanism has been identified. We investigated whether SVD burden, in terms of WMH, PVS and lacune status, was related to changes in the cerebral arterial wall by applying global cerebral pulse wave velocity (gcPWV) measurements, a newly described marker of cerebral vascular stiffness. In a population-based cohort of 190 individuals, 66-85 years old, SVD features were estimated from T1-weighted and FLAIR images while gcPWV was estimated from 4D flow MRI data. Additionally, the gcPWV's stability to variations in field-of-view was analyzed. The gcPWV was 10.82 (3.94) m/s and displayed a significant correlation to WMH and white matter PVS volume (r = 0.29, p < 0.001; r = 0.21, p = 0.004 respectively from nonparametric tests) that persisted after adjusting for age, blood pressure variables, body mass index, ApoB/A1 ratio, smoking as well as cerebral pulsatility index, a previously suggested early marker of SVD. The gcPWV displayed satisfactory stability to field-of-view variations. Our results suggest that SVD is accompanied by changes in the cerebral arterial wall that can be captured by considering the velocity of the pulse wave transmission through the cerebral arterial network.</p>\",\"PeriodicalId\":15325,\"journal\":{\"name\":\"Journal of Cerebral Blood Flow and Metabolism\",\"volume\":\" \",\"pages\":\"1343-1351\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11342729/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cerebral Blood Flow and Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/0271678X241230741\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cerebral Blood Flow and Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0271678X241230741","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Cerebral arterial stiffness is linked to white matter hyperintensities and perivascular spaces in older adults - A 4D flow MRI study.
White matter hyperintensities (WMH), perivascular spaces (PVS) and lacunes are common MRI features of small vessel disease (SVD). However, no shared underlying pathological mechanism has been identified. We investigated whether SVD burden, in terms of WMH, PVS and lacune status, was related to changes in the cerebral arterial wall by applying global cerebral pulse wave velocity (gcPWV) measurements, a newly described marker of cerebral vascular stiffness. In a population-based cohort of 190 individuals, 66-85 years old, SVD features were estimated from T1-weighted and FLAIR images while gcPWV was estimated from 4D flow MRI data. Additionally, the gcPWV's stability to variations in field-of-view was analyzed. The gcPWV was 10.82 (3.94) m/s and displayed a significant correlation to WMH and white matter PVS volume (r = 0.29, p < 0.001; r = 0.21, p = 0.004 respectively from nonparametric tests) that persisted after adjusting for age, blood pressure variables, body mass index, ApoB/A1 ratio, smoking as well as cerebral pulsatility index, a previously suggested early marker of SVD. The gcPWV displayed satisfactory stability to field-of-view variations. Our results suggest that SVD is accompanied by changes in the cerebral arterial wall that can be captured by considering the velocity of the pulse wave transmission through the cerebral arterial network.
期刊介绍:
JCBFM is the official journal of the International Society for Cerebral Blood Flow & Metabolism, which is committed to publishing high quality, independently peer-reviewed research and review material. JCBFM stands at the interface between basic and clinical neurovascular research, and features timely and relevant research highlighting experimental, theoretical, and clinical aspects of brain circulation, metabolism and imaging. The journal is relevant to any physician or scientist with an interest in brain function, cerebrovascular disease, cerebral vascular regulation and brain metabolism, including neurologists, neurochemists, physiologists, pharmacologists, anesthesiologists, neuroradiologists, neurosurgeons, neuropathologists and neuroscientists.