Zhichao Liu, Yulun Nie, Shuo Wang, Chengliang Sun, Yao Cai, Sheng Liu
{"title":"基于 GHz 薄膜体声谐振器和纳米级 CaO2 的癌细胞纳米治疗方法。","authors":"Zhichao Liu, Yulun Nie, Shuo Wang, Chengliang Sun, Yao Cai, Sheng Liu","doi":"10.1177/08853282241229888","DOIUrl":null,"url":null,"abstract":"<p><p>Sonodynamic therapy (SDT) is an emerging cancer treatment method in recent years. However, the ultrasound signal utilized for SDT is usually located at a low-frequency spectrum (<2 MHz), and in the field of SDT research, few studies have focused on the exploration and development of ultrasound frequency. Studies have shown that the GHz-level ultrasound can increase cell membrane permeability and have a negligible effect on cell vitality. Herein, we reported the study of a GHz thin film bulk acoustic resonator as an ultrasound source for synergistic treatment with nanoscale calcium peroxide (CaO<sub>2</sub>). It was discovered that this ultrasound source ultimately achieved an efficient therapeutic outcome on mouse breast cancer cell line 4T1. Such GHz-level ultrasound application in SDT is of high significance to broaden the cognition and application scope of SDT.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"932-939"},"PeriodicalIF":2.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A cancer cell nanotherapy method based on GHz film bulk acoustic resonator and nanoscale CaO<sub>2</sub>.\",\"authors\":\"Zhichao Liu, Yulun Nie, Shuo Wang, Chengliang Sun, Yao Cai, Sheng Liu\",\"doi\":\"10.1177/08853282241229888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sonodynamic therapy (SDT) is an emerging cancer treatment method in recent years. However, the ultrasound signal utilized for SDT is usually located at a low-frequency spectrum (<2 MHz), and in the field of SDT research, few studies have focused on the exploration and development of ultrasound frequency. Studies have shown that the GHz-level ultrasound can increase cell membrane permeability and have a negligible effect on cell vitality. Herein, we reported the study of a GHz thin film bulk acoustic resonator as an ultrasound source for synergistic treatment with nanoscale calcium peroxide (CaO<sub>2</sub>). It was discovered that this ultrasound source ultimately achieved an efficient therapeutic outcome on mouse breast cancer cell line 4T1. Such GHz-level ultrasound application in SDT is of high significance to broaden the cognition and application scope of SDT.</p>\",\"PeriodicalId\":15138,\"journal\":{\"name\":\"Journal of Biomaterials Applications\",\"volume\":\" \",\"pages\":\"932-939\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08853282241229888\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282241229888","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A cancer cell nanotherapy method based on GHz film bulk acoustic resonator and nanoscale CaO2.
Sonodynamic therapy (SDT) is an emerging cancer treatment method in recent years. However, the ultrasound signal utilized for SDT is usually located at a low-frequency spectrum (<2 MHz), and in the field of SDT research, few studies have focused on the exploration and development of ultrasound frequency. Studies have shown that the GHz-level ultrasound can increase cell membrane permeability and have a negligible effect on cell vitality. Herein, we reported the study of a GHz thin film bulk acoustic resonator as an ultrasound source for synergistic treatment with nanoscale calcium peroxide (CaO2). It was discovered that this ultrasound source ultimately achieved an efficient therapeutic outcome on mouse breast cancer cell line 4T1. Such GHz-level ultrasound application in SDT is of high significance to broaden the cognition and application scope of SDT.
期刊介绍:
The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials.
Peer-reviewed articles by biomedical specialists from around the world cover:
New developments in biomaterials, R&D, properties and performance, evaluation and applications
Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices
Current findings in biological compatibility/incompatibility of biomaterials
The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use.
The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.