利用代谢组学和血清药理学鉴定肝脏载体转运(OATP1B3-P-gp)功能的内源性生物标记物并确定其特征。

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yong-Wen Jin, Yan-Rong Ma, Ming-Kang Zhang, Wen-Bin Xia, Pei Yuan, Bo-Xia Li, Yu-Hui Wei, Xin-An Wu
{"title":"利用代谢组学和血清药理学鉴定肝脏载体转运(OATP1B3-P-gp)功能的内源性生物标记物并确定其特征。","authors":"Yong-Wen Jin, Yan-Rong Ma, Ming-Kang Zhang, Wen-Bin Xia, Pei Yuan, Bo-Xia Li, Yu-Hui Wei, Xin-An Wu","doi":"10.1007/s00726-023-03363-5","DOIUrl":null,"url":null,"abstract":"<p><p>The organic anion-transporting polypeptide 1B3 and P-glycoprotein (P-gp) provide efficient directional transport (OATP1B3-P-gp) from the blood to the bile that serves as a key determinant of hepatic disposition of the drug. Unfortunately, there is still a lack of effective means to evaluate the disposal ability mediated by transporters. The present study was designed to identify a suitable endogenous biomarker for the assessment of OATP1B3-P-gp function in the liver. We established stably transfected HEK293T-OATP1B3 and HEK293T-P-gp cell lines. Results showed that azelaic acid (AzA) was an endogenous substrate for OATP1B3 and P-gp using serum pharmacology combined with metabolomics. There is a good correlation between the serum concentration of AzA and probe drugs of rOATP1B3 and rP-gp when rats were treated with their inhibitors. Importantly, after 5-fluorouracil-induced rat liver injury, the relative mRNA level and expression of rOATP1B3 and rP-gp were markedly down-regulated in the liver, and the serum concentration of AzA was significantly increased. These observations suggest that AzA is an endogenous substrate of both OATP1B3 and P-gp, and may serve as a potential endogenous biomarker for the assessment of the function of OATP1B3-P-gp for the prediction of changes in the pharmacokinetics of drugs transported by OATP1B3-P-gp in liver disease states.</p>","PeriodicalId":7810,"journal":{"name":"Amino Acids","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10847190/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification and characterization of endogenous biomarkers for hepatic vectorial transport (OATP1B3-P-gp) function using metabolomics with serum pharmacology.\",\"authors\":\"Yong-Wen Jin, Yan-Rong Ma, Ming-Kang Zhang, Wen-Bin Xia, Pei Yuan, Bo-Xia Li, Yu-Hui Wei, Xin-An Wu\",\"doi\":\"10.1007/s00726-023-03363-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The organic anion-transporting polypeptide 1B3 and P-glycoprotein (P-gp) provide efficient directional transport (OATP1B3-P-gp) from the blood to the bile that serves as a key determinant of hepatic disposition of the drug. Unfortunately, there is still a lack of effective means to evaluate the disposal ability mediated by transporters. The present study was designed to identify a suitable endogenous biomarker for the assessment of OATP1B3-P-gp function in the liver. We established stably transfected HEK293T-OATP1B3 and HEK293T-P-gp cell lines. Results showed that azelaic acid (AzA) was an endogenous substrate for OATP1B3 and P-gp using serum pharmacology combined with metabolomics. There is a good correlation between the serum concentration of AzA and probe drugs of rOATP1B3 and rP-gp when rats were treated with their inhibitors. Importantly, after 5-fluorouracil-induced rat liver injury, the relative mRNA level and expression of rOATP1B3 and rP-gp were markedly down-regulated in the liver, and the serum concentration of AzA was significantly increased. These observations suggest that AzA is an endogenous substrate of both OATP1B3 and P-gp, and may serve as a potential endogenous biomarker for the assessment of the function of OATP1B3-P-gp for the prediction of changes in the pharmacokinetics of drugs transported by OATP1B3-P-gp in liver disease states.</p>\",\"PeriodicalId\":7810,\"journal\":{\"name\":\"Amino Acids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10847190/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Amino Acids\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00726-023-03363-5\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Amino Acids","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00726-023-03363-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

有机阴离子转运多肽 1B3 和 P 糖蛋白(P-gp)提供了从血液到胆汁的高效定向转运(OATP1B3-P-gp),这是决定药物肝脏处置的关键因素。遗憾的是,目前仍缺乏有效的方法来评估转运体介导的药物处置能力。本研究旨在找出一种合适的内源性生物标记物,用于评估肝脏中 OATP1B3-P-gp 的功能。我们建立了稳定转染的 HEK293T-OATP1B3 和 HEK293T-P-gp 细胞系。结果表明,利用血清药理学结合代谢组学,壬二酸(AzA)是 OATP1B3 和 P-gp 的内源性底物。当大鼠接受 OATP1B3 和 P-gp 抑制剂治疗时,AzA 的血清浓度与 rOATP1B3 和 rP-gp 的探针药物之间存在良好的相关性。重要的是,5-氟尿嘧啶诱导大鼠肝损伤后,肝脏中 rOATP1B3 和 rP-gp 的相对 mRNA 水平和表达明显下调,血清中 AzA 的浓度显著升高。这些观察结果表明,AzA是OATP1B3和P-gp的内源性底物,可作为潜在的内源性生物标志物,用于评估OATP1B3-P-gp的功能,预测肝病状态下OATP1B3-P-gp转运药物的药代动力学变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Identification and characterization of endogenous biomarkers for hepatic vectorial transport (OATP1B3-P-gp) function using metabolomics with serum pharmacology.

Identification and characterization of endogenous biomarkers for hepatic vectorial transport (OATP1B3-P-gp) function using metabolomics with serum pharmacology.

The organic anion-transporting polypeptide 1B3 and P-glycoprotein (P-gp) provide efficient directional transport (OATP1B3-P-gp) from the blood to the bile that serves as a key determinant of hepatic disposition of the drug. Unfortunately, there is still a lack of effective means to evaluate the disposal ability mediated by transporters. The present study was designed to identify a suitable endogenous biomarker for the assessment of OATP1B3-P-gp function in the liver. We established stably transfected HEK293T-OATP1B3 and HEK293T-P-gp cell lines. Results showed that azelaic acid (AzA) was an endogenous substrate for OATP1B3 and P-gp using serum pharmacology combined with metabolomics. There is a good correlation between the serum concentration of AzA and probe drugs of rOATP1B3 and rP-gp when rats were treated with their inhibitors. Importantly, after 5-fluorouracil-induced rat liver injury, the relative mRNA level and expression of rOATP1B3 and rP-gp were markedly down-regulated in the liver, and the serum concentration of AzA was significantly increased. These observations suggest that AzA is an endogenous substrate of both OATP1B3 and P-gp, and may serve as a potential endogenous biomarker for the assessment of the function of OATP1B3-P-gp for the prediction of changes in the pharmacokinetics of drugs transported by OATP1B3-P-gp in liver disease states.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Amino Acids
Amino Acids 生物-生化与分子生物学
CiteScore
6.40
自引率
5.70%
发文量
99
审稿时长
2.2 months
期刊介绍: Amino Acids publishes contributions from all fields of amino acid and protein research: analysis, separation, synthesis, biosynthesis, cross linking amino acids, racemization/enantiomers, modification of amino acids as phosphorylation, methylation, acetylation, glycosylation and nonenzymatic glycosylation, new roles for amino acids in physiology and pathophysiology, biology, amino acid analogues and derivatives, polyamines, radiated amino acids, peptides, stable isotopes and isotopes of amino acids. Applications in medicine, food chemistry, nutrition, gastroenterology, nephrology, neurochemistry, pharmacology, excitatory amino acids are just some of the topics covered. Fields of interest include: Biochemistry, food chemistry, nutrition, neurology, psychiatry, pharmacology, nephrology, gastroenterology, microbiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信