{"title":"替代燃料的烟霞形成和持续条件","authors":"Sina Hofer, Klaus Gierens, Susanne Rohs","doi":"10.1127/metz/2024/1178","DOIUrl":null,"url":null,"abstract":"In order to counteract global warming, the European Green Deal was made to improve the journey to a sustainable future. This also has an impact on aviation, because in the future the growth in air traffic must no longer lead to rising emissions, but even all aviation CO2 emissions have to be reduced to zero to achieve the goal of climate-neutral aviation by 2050. There are several approaches for new propulsion solutions and sustainable vehicle configurations and operations. A promising approach is the use of modern fuels. These include drop-in fuels (kerosene-like fuels) but also revolutionary concepts such as the use of liquid hydrogen or of liquid natural gas, electric flying, and mixed forms of these. These approaches have certain advantages regarding the climate impact, but not all processes and effects are fully understood, especially their effects on contrails and their properties, frequency, and lifetime. In this study, we analyse 10 years of airborne and reanalysis data of temperature and humidity to see, how much more persistent contrails would be formed if kerosene were replaced by alternative fuels of different energy-specific water vapour emission indices, which are generally higher for alternative fuels. It turns out, that the amount of additional persistent contrails is quite minor for drop-in fuels, which are already used nowadays, but it is larger for another kind of fuels, such as methane and liquid hydrogen.","PeriodicalId":49824,"journal":{"name":"Meteorologische Zeitschrift","volume":"70 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contrail formation and persistence conditions for alternative fuels\",\"authors\":\"Sina Hofer, Klaus Gierens, Susanne Rohs\",\"doi\":\"10.1127/metz/2024/1178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to counteract global warming, the European Green Deal was made to improve the journey to a sustainable future. This also has an impact on aviation, because in the future the growth in air traffic must no longer lead to rising emissions, but even all aviation CO2 emissions have to be reduced to zero to achieve the goal of climate-neutral aviation by 2050. There are several approaches for new propulsion solutions and sustainable vehicle configurations and operations. A promising approach is the use of modern fuels. These include drop-in fuels (kerosene-like fuels) but also revolutionary concepts such as the use of liquid hydrogen or of liquid natural gas, electric flying, and mixed forms of these. These approaches have certain advantages regarding the climate impact, but not all processes and effects are fully understood, especially their effects on contrails and their properties, frequency, and lifetime. In this study, we analyse 10 years of airborne and reanalysis data of temperature and humidity to see, how much more persistent contrails would be formed if kerosene were replaced by alternative fuels of different energy-specific water vapour emission indices, which are generally higher for alternative fuels. It turns out, that the amount of additional persistent contrails is quite minor for drop-in fuels, which are already used nowadays, but it is larger for another kind of fuels, such as methane and liquid hydrogen.\",\"PeriodicalId\":49824,\"journal\":{\"name\":\"Meteorologische Zeitschrift\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meteorologische Zeitschrift\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1127/metz/2024/1178\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteorologische Zeitschrift","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1127/metz/2024/1178","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Contrail formation and persistence conditions for alternative fuels
In order to counteract global warming, the European Green Deal was made to improve the journey to a sustainable future. This also has an impact on aviation, because in the future the growth in air traffic must no longer lead to rising emissions, but even all aviation CO2 emissions have to be reduced to zero to achieve the goal of climate-neutral aviation by 2050. There are several approaches for new propulsion solutions and sustainable vehicle configurations and operations. A promising approach is the use of modern fuels. These include drop-in fuels (kerosene-like fuels) but also revolutionary concepts such as the use of liquid hydrogen or of liquid natural gas, electric flying, and mixed forms of these. These approaches have certain advantages regarding the climate impact, but not all processes and effects are fully understood, especially their effects on contrails and their properties, frequency, and lifetime. In this study, we analyse 10 years of airborne and reanalysis data of temperature and humidity to see, how much more persistent contrails would be formed if kerosene were replaced by alternative fuels of different energy-specific water vapour emission indices, which are generally higher for alternative fuels. It turns out, that the amount of additional persistent contrails is quite minor for drop-in fuels, which are already used nowadays, but it is larger for another kind of fuels, such as methane and liquid hydrogen.
期刊介绍:
Meteorologische Zeitschrift (Contributions to Atmospheric Sciences) accepts high-quality, English language, double peer-reviewed manuscripts on all aspects of observational, theoretical and computational research on the entire field of meteorology and atmospheric physics, including climatology. Manuscripts from applied sectors such as, e.g., Environmental Meteorology or Energy Meteorology are particularly welcome.
Meteorologische Zeitschrift (Contributions to Atmospheric Sciences) represents a natural forum for the meteorological community of Central Europe and worldwide.