{"title":"视觉空间参照系在 \"以我为中心 \"和 \"以他为中心 \"之间切换过程的皮层相关性:fNIRS 研究","authors":"","doi":"10.1007/s10548-023-01032-0","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Human beings represent spatial information according to egocentric (body-to-object) and allocentric (object-to-object) frames of reference. In everyday life, we constantly switch from one frame of reference to another in order to react effectively to the specific needs of the environment and task demands. However, to the best of our knowledge, no study to date has investigated the cortical activity of switching and non-switching processes between egocentric and allocentric spatial encodings. To this aim, a custom-designed visuo-spatial memory task was administered and the cortical activities underlying switching vs non-switching spatial processes were investigated. Changes in concentrations of oxygenated and deoxygenated haemoglobin were measured using functional near-infrared spectroscopy (fNIRS). Participants were asked to memorize triads of geometric objects and then make two consecutive judgments about the same triad. In the non-switching condition, both spatial judgments considered the same frame of reference: only egocentric or only allocentric. In the switching condition, if the first judgment was egocentric, the second one was allocentric (or vice versa). The results showed a generalized activation of the frontal regions during the switching compared to the non-switching condition. Additionally, increased cortical activity was found in the temporo-parietal junction during the switching condition compared to the non-switching condition. Overall, these results illustrate the cortical activity underlying the processing of switching between body position and environmental stimuli, showing an important role of the temporo-parietal junction and frontal regions in the preparation and switching between egocentric and allocentric reference frames.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"70 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cortical Correlates of Visuospatial Switching Processes Between Egocentric and Allocentric Frames of Reference: A fNIRS Study\",\"authors\":\"\",\"doi\":\"10.1007/s10548-023-01032-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Human beings represent spatial information according to egocentric (body-to-object) and allocentric (object-to-object) frames of reference. In everyday life, we constantly switch from one frame of reference to another in order to react effectively to the specific needs of the environment and task demands. However, to the best of our knowledge, no study to date has investigated the cortical activity of switching and non-switching processes between egocentric and allocentric spatial encodings. To this aim, a custom-designed visuo-spatial memory task was administered and the cortical activities underlying switching vs non-switching spatial processes were investigated. Changes in concentrations of oxygenated and deoxygenated haemoglobin were measured using functional near-infrared spectroscopy (fNIRS). Participants were asked to memorize triads of geometric objects and then make two consecutive judgments about the same triad. In the non-switching condition, both spatial judgments considered the same frame of reference: only egocentric or only allocentric. In the switching condition, if the first judgment was egocentric, the second one was allocentric (or vice versa). The results showed a generalized activation of the frontal regions during the switching compared to the non-switching condition. Additionally, increased cortical activity was found in the temporo-parietal junction during the switching condition compared to the non-switching condition. Overall, these results illustrate the cortical activity underlying the processing of switching between body position and environmental stimuli, showing an important role of the temporo-parietal junction and frontal regions in the preparation and switching between egocentric and allocentric reference frames.</p>\",\"PeriodicalId\":55329,\"journal\":{\"name\":\"Brain Topography\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Topography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10548-023-01032-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Topography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10548-023-01032-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Cortical Correlates of Visuospatial Switching Processes Between Egocentric and Allocentric Frames of Reference: A fNIRS Study
Abstract
Human beings represent spatial information according to egocentric (body-to-object) and allocentric (object-to-object) frames of reference. In everyday life, we constantly switch from one frame of reference to another in order to react effectively to the specific needs of the environment and task demands. However, to the best of our knowledge, no study to date has investigated the cortical activity of switching and non-switching processes between egocentric and allocentric spatial encodings. To this aim, a custom-designed visuo-spatial memory task was administered and the cortical activities underlying switching vs non-switching spatial processes were investigated. Changes in concentrations of oxygenated and deoxygenated haemoglobin were measured using functional near-infrared spectroscopy (fNIRS). Participants were asked to memorize triads of geometric objects and then make two consecutive judgments about the same triad. In the non-switching condition, both spatial judgments considered the same frame of reference: only egocentric or only allocentric. In the switching condition, if the first judgment was egocentric, the second one was allocentric (or vice versa). The results showed a generalized activation of the frontal regions during the switching compared to the non-switching condition. Additionally, increased cortical activity was found in the temporo-parietal junction during the switching condition compared to the non-switching condition. Overall, these results illustrate the cortical activity underlying the processing of switching between body position and environmental stimuli, showing an important role of the temporo-parietal junction and frontal regions in the preparation and switching between egocentric and allocentric reference frames.
期刊介绍:
Brain Topography publishes clinical and basic research on cognitive neuroscience and functional neurophysiology using the full range of imaging techniques including EEG, MEG, fMRI, TMS, diffusion imaging, spectroscopy, intracranial recordings, lesion studies, and related methods. Submissions combining multiple techniques are particularly encouraged, as well as reports of new and innovative methodologies.