Suyeon Yang , Machi Takeuchi , Rick R.M. Joosten , John P.M. van Duynhoven , Heiner Friedrich , Johannes Hohlbein
{"title":"将低温关联光电子显微镜(cryo-CLEM)用于食品氧化研究","authors":"Suyeon Yang , Machi Takeuchi , Rick R.M. Joosten , John P.M. van Duynhoven , Heiner Friedrich , Johannes Hohlbein","doi":"10.1016/j.foostr.2024.100365","DOIUrl":null,"url":null,"abstract":"<div><p>Lipid oxidation is a major cause of product deterioration in protein stabilised oil-in-water food emulsions. The impact of protein emulsifiers on lipid oxidation and the stability depends on the specific type of protein emulsifiers used and the redox conditions in the emulsion. However, the exact impact of these protein emulsifiers at the oil-water interface on lipid oxidation and the mechanism of lipid-protein co-oxidation are currently unknown. Here, we developed a cryo-correlative light and electron microscopy (cryo-CLEM) platform for co-localising the oxidation of lipids and proteins. For this first implementation of cryo-CLEM for food oxidation studies we optimised specifically the part of cryo-fluorescence microscopy (cryo-FM) by adding parts that prevent fogging on the sample and enable homogeneous laser illumination. We showed that lipid oxidation in food emulsions can be observed at cryogenic temperature using fluorescence imaging of the fluorophore BODIPY 665/676 that we employed earlier as a lipid oxidation sensor at room temperature. Using cryo-transmission electron microscopy (cryo-TEM), we observed that more protein aggregates are found at the droplet interfaces in oxidized emulsions compared to fresh emulsions. Our cryo-CLEM platform paves the way for future cryo-correlative oxidation studies of food emulsions.</p></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":"40 ","pages":"Article 100365"},"PeriodicalIF":5.6000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213329124000017/pdfft?md5=d138a8ed471ff89d3bdceaf0ccd54cfb&pid=1-s2.0-S2213329124000017-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Adapting cryogenic correlative light and electron microscopy (cryo-CLEM) for food oxidation studies\",\"authors\":\"Suyeon Yang , Machi Takeuchi , Rick R.M. Joosten , John P.M. van Duynhoven , Heiner Friedrich , Johannes Hohlbein\",\"doi\":\"10.1016/j.foostr.2024.100365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lipid oxidation is a major cause of product deterioration in protein stabilised oil-in-water food emulsions. The impact of protein emulsifiers on lipid oxidation and the stability depends on the specific type of protein emulsifiers used and the redox conditions in the emulsion. However, the exact impact of these protein emulsifiers at the oil-water interface on lipid oxidation and the mechanism of lipid-protein co-oxidation are currently unknown. Here, we developed a cryo-correlative light and electron microscopy (cryo-CLEM) platform for co-localising the oxidation of lipids and proteins. For this first implementation of cryo-CLEM for food oxidation studies we optimised specifically the part of cryo-fluorescence microscopy (cryo-FM) by adding parts that prevent fogging on the sample and enable homogeneous laser illumination. We showed that lipid oxidation in food emulsions can be observed at cryogenic temperature using fluorescence imaging of the fluorophore BODIPY 665/676 that we employed earlier as a lipid oxidation sensor at room temperature. Using cryo-transmission electron microscopy (cryo-TEM), we observed that more protein aggregates are found at the droplet interfaces in oxidized emulsions compared to fresh emulsions. Our cryo-CLEM platform paves the way for future cryo-correlative oxidation studies of food emulsions.</p></div>\",\"PeriodicalId\":48640,\"journal\":{\"name\":\"Food Structure-Netherlands\",\"volume\":\"40 \",\"pages\":\"Article 100365\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2213329124000017/pdfft?md5=d138a8ed471ff89d3bdceaf0ccd54cfb&pid=1-s2.0-S2213329124000017-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Structure-Netherlands\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213329124000017\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Structure-Netherlands","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213329124000017","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Adapting cryogenic correlative light and electron microscopy (cryo-CLEM) for food oxidation studies
Lipid oxidation is a major cause of product deterioration in protein stabilised oil-in-water food emulsions. The impact of protein emulsifiers on lipid oxidation and the stability depends on the specific type of protein emulsifiers used and the redox conditions in the emulsion. However, the exact impact of these protein emulsifiers at the oil-water interface on lipid oxidation and the mechanism of lipid-protein co-oxidation are currently unknown. Here, we developed a cryo-correlative light and electron microscopy (cryo-CLEM) platform for co-localising the oxidation of lipids and proteins. For this first implementation of cryo-CLEM for food oxidation studies we optimised specifically the part of cryo-fluorescence microscopy (cryo-FM) by adding parts that prevent fogging on the sample and enable homogeneous laser illumination. We showed that lipid oxidation in food emulsions can be observed at cryogenic temperature using fluorescence imaging of the fluorophore BODIPY 665/676 that we employed earlier as a lipid oxidation sensor at room temperature. Using cryo-transmission electron microscopy (cryo-TEM), we observed that more protein aggregates are found at the droplet interfaces in oxidized emulsions compared to fresh emulsions. Our cryo-CLEM platform paves the way for future cryo-correlative oxidation studies of food emulsions.
期刊介绍:
Food Structure is the premier international forum devoted to the publication of high-quality original research on food structure. The focus of this journal is on food structure in the context of its relationship with molecular composition, processing and macroscopic properties (e.g., shelf stability, sensory properties, etc.). Manuscripts that only report qualitative findings and micrographs and that lack sound hypothesis-driven, quantitative structure-function research are not accepted. Significance of the research findings for the food science community and/or industry must also be highlighted.