Benjamin Stodt , Daniel Neudek , Stephan Getzmann , Edmund Wascher , Rainer Martin
{"title":"比较真实和虚拟环境中的听觉距离感知以及响度线索的作用:基于事件相关电位的研究","authors":"Benjamin Stodt , Daniel Neudek , Stephan Getzmann , Edmund Wascher , Rainer Martin","doi":"10.1016/j.heares.2024.108968","DOIUrl":null,"url":null,"abstract":"<div><p>The perception of the distance to a sound source is relevant in many everyday situations, not only in real spaces, but also in virtual reality (VR) environments. Where real rooms often reach their limits, VR offers far-reaching possibilities to simulate a wide range of acoustic scenarios. However, in virtual room acoustics a plausible reproduction of distance-related cues can be challenging. In the present study, we compared the detection of changes of the distance to a sound source and its neurocognitive correlates in a real and a virtual reverberant environment, using an active auditory oddball paradigm and EEG measures. The main goal was to test whether the experiments in the virtual and real environments produced equivalent behavioral and EEG results. Three loudspeakers were placed at ego-centric distances of 2 m (near), 4 m (center), and 8 m (far) in front of the participants (<em>N</em> = 20), each 66 cm below their ear level. Sequences of 500 ms noise stimuli were presented either from the center position (standards, 80 % of trials) or from the near or far position (targets, 10 % each). The participants had to indicate a target position via a joystick response (“near” or “far”). Sounds were emitted either by real loudspeakers in the real environment or rendered and played back for the corresponding positions via headphones in the virtual environment. In addition, within both environments, loudness of the auditory stimuli was either unaltered (natural loudness) or the loudness cue was manipulated, so that all three loudspeakers were perceived equally loud at the listener's position (matched loudness). The EEG analysis focused on the mismatch negativity (MMN), P3a, and P3b as correlates of deviance detection, attentional orientation, and context-updating/stimulus evaluation, respectively. Overall, behavioral data showed that detection of the target positions was reduced within the virtual environment, and especially when loudness was matched. Except for slight latency shifts in the virtual environment, EEG analysis indicated comparable patterns within both environments and independent of loudness settings. Thus, while the neurocognitive processing of changes in distance appears to be similar in virtual and real spaces, a proper representation of loudness appears to be crucial to achieve a good task performance in virtual acoustic environments.</p></div>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"444 ","pages":"Article 108968"},"PeriodicalIF":2.5000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378595524000212/pdfft?md5=9ac7ff35e46407fa7ec842a2ef5b0ee9&pid=1-s2.0-S0378595524000212-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Comparing auditory distance perception in real and virtual environments and the role of the loudness cue: A study based on event-related potentials\",\"authors\":\"Benjamin Stodt , Daniel Neudek , Stephan Getzmann , Edmund Wascher , Rainer Martin\",\"doi\":\"10.1016/j.heares.2024.108968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The perception of the distance to a sound source is relevant in many everyday situations, not only in real spaces, but also in virtual reality (VR) environments. Where real rooms often reach their limits, VR offers far-reaching possibilities to simulate a wide range of acoustic scenarios. However, in virtual room acoustics a plausible reproduction of distance-related cues can be challenging. In the present study, we compared the detection of changes of the distance to a sound source and its neurocognitive correlates in a real and a virtual reverberant environment, using an active auditory oddball paradigm and EEG measures. The main goal was to test whether the experiments in the virtual and real environments produced equivalent behavioral and EEG results. Three loudspeakers were placed at ego-centric distances of 2 m (near), 4 m (center), and 8 m (far) in front of the participants (<em>N</em> = 20), each 66 cm below their ear level. Sequences of 500 ms noise stimuli were presented either from the center position (standards, 80 % of trials) or from the near or far position (targets, 10 % each). The participants had to indicate a target position via a joystick response (“near” or “far”). Sounds were emitted either by real loudspeakers in the real environment or rendered and played back for the corresponding positions via headphones in the virtual environment. In addition, within both environments, loudness of the auditory stimuli was either unaltered (natural loudness) or the loudness cue was manipulated, so that all three loudspeakers were perceived equally loud at the listener's position (matched loudness). The EEG analysis focused on the mismatch negativity (MMN), P3a, and P3b as correlates of deviance detection, attentional orientation, and context-updating/stimulus evaluation, respectively. Overall, behavioral data showed that detection of the target positions was reduced within the virtual environment, and especially when loudness was matched. Except for slight latency shifts in the virtual environment, EEG analysis indicated comparable patterns within both environments and independent of loudness settings. Thus, while the neurocognitive processing of changes in distance appears to be similar in virtual and real spaces, a proper representation of loudness appears to be crucial to achieve a good task performance in virtual acoustic environments.</p></div>\",\"PeriodicalId\":12881,\"journal\":{\"name\":\"Hearing Research\",\"volume\":\"444 \",\"pages\":\"Article 108968\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0378595524000212/pdfft?md5=9ac7ff35e46407fa7ec842a2ef5b0ee9&pid=1-s2.0-S0378595524000212-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hearing Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378595524000212\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hearing Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378595524000212","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
Comparing auditory distance perception in real and virtual environments and the role of the loudness cue: A study based on event-related potentials
The perception of the distance to a sound source is relevant in many everyday situations, not only in real spaces, but also in virtual reality (VR) environments. Where real rooms often reach their limits, VR offers far-reaching possibilities to simulate a wide range of acoustic scenarios. However, in virtual room acoustics a plausible reproduction of distance-related cues can be challenging. In the present study, we compared the detection of changes of the distance to a sound source and its neurocognitive correlates in a real and a virtual reverberant environment, using an active auditory oddball paradigm and EEG measures. The main goal was to test whether the experiments in the virtual and real environments produced equivalent behavioral and EEG results. Three loudspeakers were placed at ego-centric distances of 2 m (near), 4 m (center), and 8 m (far) in front of the participants (N = 20), each 66 cm below their ear level. Sequences of 500 ms noise stimuli were presented either from the center position (standards, 80 % of trials) or from the near or far position (targets, 10 % each). The participants had to indicate a target position via a joystick response (“near” or “far”). Sounds were emitted either by real loudspeakers in the real environment or rendered and played back for the corresponding positions via headphones in the virtual environment. In addition, within both environments, loudness of the auditory stimuli was either unaltered (natural loudness) or the loudness cue was manipulated, so that all three loudspeakers were perceived equally loud at the listener's position (matched loudness). The EEG analysis focused on the mismatch negativity (MMN), P3a, and P3b as correlates of deviance detection, attentional orientation, and context-updating/stimulus evaluation, respectively. Overall, behavioral data showed that detection of the target positions was reduced within the virtual environment, and especially when loudness was matched. Except for slight latency shifts in the virtual environment, EEG analysis indicated comparable patterns within both environments and independent of loudness settings. Thus, while the neurocognitive processing of changes in distance appears to be similar in virtual and real spaces, a proper representation of loudness appears to be crucial to achieve a good task performance in virtual acoustic environments.
期刊介绍:
The aim of the journal is to provide a forum for papers concerned with basic peripheral and central auditory mechanisms. Emphasis is on experimental and clinical studies, but theoretical and methodological papers will also be considered. The journal publishes original research papers, review and mini- review articles, rapid communications, method/protocol and perspective articles.
Papers submitted should deal with auditory anatomy, physiology, psychophysics, imaging, modeling and behavioural studies in animals and humans, as well as hearing aids and cochlear implants. Papers dealing with the vestibular system are also considered for publication. Papers on comparative aspects of hearing and on effects of drugs and environmental contaminants on hearing function will also be considered. Clinical papers will be accepted when they contribute to the understanding of normal and pathological hearing functions.