Ting Shu , Yuliang Zhang , Yanhui Cao , Fei Wang , Bochen Jiang , Yanhua Lei , Lihua Dong , Xiaobo Chen
{"title":"用 GO-PPy@SiO2 光热填料增强的环氧树脂复合材料涂层的防腐和防结冰/脱冰性能","authors":"Ting Shu , Yuliang Zhang , Yanhui Cao , Fei Wang , Bochen Jiang , Yanhua Lei , Lihua Dong , Xiaobo Chen","doi":"10.1016/j.ceja.2024.100592","DOIUrl":null,"url":null,"abstract":"<div><p>In polar environments, the presence of ice on the surfaces of ships and instruments can lead to equipment failure, an unstable center of gravity, and pose hazards to operators. To mitigate the damage caused by both icing and corrosion, this paper aims to investigate a corrosion-resistant photothermal deicing coating material. The coating matrix utilizes a low-viscosity epoxy resin system, while the additives include polypyrrole (PPy) with excellent photothermal conversion capability and corrosion resistance, along with graphene oxide (GO)-modified nano-silica. By carefully controlling the ratio, a composite coating is formulated with both anti-corrosion and photothermal deicing abilities under light conditions. The results demonstrate that under simulated sunlight irradiation, the surface temperature of the coating at different proportions can rise to over 80 ℃ within 10 min, with the highest temperature reaching 84.9 ℃. The optimal proportion of the coating remains unfrozen at -15 ℃, exhibiting an icing delay time of 710 s, and the frozen droplets melt within 5 s. Additionally, the coating exhibits excellent corrosion resistance, contributing to a more effective protection of metal surfaces. Therefore, this type of photothermal anticorrosive coating holds significant potential for widespread application in polar environments.</p></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666821124000103/pdfft?md5=e791ebb205c0577984acbb5114785b09&pid=1-s2.0-S2666821124000103-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Anticorrosive and anti-icing/deicing behavior of epoxy composite coatings reinforced with GO-PPy@SiO2 photothermal fillers\",\"authors\":\"Ting Shu , Yuliang Zhang , Yanhui Cao , Fei Wang , Bochen Jiang , Yanhua Lei , Lihua Dong , Xiaobo Chen\",\"doi\":\"10.1016/j.ceja.2024.100592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In polar environments, the presence of ice on the surfaces of ships and instruments can lead to equipment failure, an unstable center of gravity, and pose hazards to operators. To mitigate the damage caused by both icing and corrosion, this paper aims to investigate a corrosion-resistant photothermal deicing coating material. The coating matrix utilizes a low-viscosity epoxy resin system, while the additives include polypyrrole (PPy) with excellent photothermal conversion capability and corrosion resistance, along with graphene oxide (GO)-modified nano-silica. By carefully controlling the ratio, a composite coating is formulated with both anti-corrosion and photothermal deicing abilities under light conditions. The results demonstrate that under simulated sunlight irradiation, the surface temperature of the coating at different proportions can rise to over 80 ℃ within 10 min, with the highest temperature reaching 84.9 ℃. The optimal proportion of the coating remains unfrozen at -15 ℃, exhibiting an icing delay time of 710 s, and the frozen droplets melt within 5 s. Additionally, the coating exhibits excellent corrosion resistance, contributing to a more effective protection of metal surfaces. Therefore, this type of photothermal anticorrosive coating holds significant potential for widespread application in polar environments.</p></div>\",\"PeriodicalId\":9749,\"journal\":{\"name\":\"Chemical Engineering Journal Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666821124000103/pdfft?md5=e791ebb205c0577984acbb5114785b09&pid=1-s2.0-S2666821124000103-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666821124000103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821124000103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Anticorrosive and anti-icing/deicing behavior of epoxy composite coatings reinforced with GO-PPy@SiO2 photothermal fillers
In polar environments, the presence of ice on the surfaces of ships and instruments can lead to equipment failure, an unstable center of gravity, and pose hazards to operators. To mitigate the damage caused by both icing and corrosion, this paper aims to investigate a corrosion-resistant photothermal deicing coating material. The coating matrix utilizes a low-viscosity epoxy resin system, while the additives include polypyrrole (PPy) with excellent photothermal conversion capability and corrosion resistance, along with graphene oxide (GO)-modified nano-silica. By carefully controlling the ratio, a composite coating is formulated with both anti-corrosion and photothermal deicing abilities under light conditions. The results demonstrate that under simulated sunlight irradiation, the surface temperature of the coating at different proportions can rise to over 80 ℃ within 10 min, with the highest temperature reaching 84.9 ℃. The optimal proportion of the coating remains unfrozen at -15 ℃, exhibiting an icing delay time of 710 s, and the frozen droplets melt within 5 s. Additionally, the coating exhibits excellent corrosion resistance, contributing to a more effective protection of metal surfaces. Therefore, this type of photothermal anticorrosive coating holds significant potential for widespread application in polar environments.