贝叶斯广义等级有序对数模型

IF 2.8 3区 经济学 Q1 ECONOMICS
Haotian Cheng , John N. Ng'ombe , Dayton M. Lambert
{"title":"贝叶斯广义等级有序对数模型","authors":"Haotian Cheng ,&nbsp;John N. Ng'ombe ,&nbsp;Dayton M. Lambert","doi":"10.1016/j.jocm.2024.100475","DOIUrl":null,"url":null,"abstract":"<div><p>Using rank-ordered logit regression, researchers typically analyze consumer preference data collected with Best-Worst Scaling (BWS) surveys. We propose a generalized rank-ordered logit (GROL) model that allows flexibility in modeling preference heterogeneity. The GROL and mixed rank-ordered logit model (MROL) accommodate preference heterogeneity. However, the GROL also allows one to model heterogeneity as a function of demographic or environmental variables. A Monte Carlo experiment compares the estimates of accuracy and precision of the proposed GROL estimation with the MROL specification. Simulation results suggest that the GROL model performs comparatively well when the GROL or the MROL is the true data-generating process (dgp). Coefficient and willingness-to-pay estimates of the GROL are more precise and accurate compared to the MROL when the MROL is the true dgp. We surmise that the increased precision of the GROL estimator arises from the added flexibility for modeling different sources of heterogeneity. An empirical application analyzes a BWS survey on consumer preferences for single-use eating-ware (SUEW) products made from biobased materials. Findings suggest that consumers value most product degradability and using non-plastic materials to fabricate SUEW. Consumers also valued the rapidity of product degradability and using non-plastic materials to make SUEW plates. Respondent attentiveness also affected willingness-to-pay (WTP) estimates across attributes. Results suggest attentive respondents were about $3.00 more WTP for biodegradable SUEW than inattentive respondents.</p></div>","PeriodicalId":46863,"journal":{"name":"Journal of Choice Modelling","volume":"50 ","pages":"Article 100475"},"PeriodicalIF":2.8000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1755534524000071/pdfft?md5=fbbb03939426530266c915725dd10ee2&pid=1-s2.0-S1755534524000071-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A Bayesian generalized rank ordered logit model\",\"authors\":\"Haotian Cheng ,&nbsp;John N. Ng'ombe ,&nbsp;Dayton M. Lambert\",\"doi\":\"10.1016/j.jocm.2024.100475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Using rank-ordered logit regression, researchers typically analyze consumer preference data collected with Best-Worst Scaling (BWS) surveys. We propose a generalized rank-ordered logit (GROL) model that allows flexibility in modeling preference heterogeneity. The GROL and mixed rank-ordered logit model (MROL) accommodate preference heterogeneity. However, the GROL also allows one to model heterogeneity as a function of demographic or environmental variables. A Monte Carlo experiment compares the estimates of accuracy and precision of the proposed GROL estimation with the MROL specification. Simulation results suggest that the GROL model performs comparatively well when the GROL or the MROL is the true data-generating process (dgp). Coefficient and willingness-to-pay estimates of the GROL are more precise and accurate compared to the MROL when the MROL is the true dgp. We surmise that the increased precision of the GROL estimator arises from the added flexibility for modeling different sources of heterogeneity. An empirical application analyzes a BWS survey on consumer preferences for single-use eating-ware (SUEW) products made from biobased materials. Findings suggest that consumers value most product degradability and using non-plastic materials to fabricate SUEW. Consumers also valued the rapidity of product degradability and using non-plastic materials to make SUEW plates. Respondent attentiveness also affected willingness-to-pay (WTP) estimates across attributes. Results suggest attentive respondents were about $3.00 more WTP for biodegradable SUEW than inattentive respondents.</p></div>\",\"PeriodicalId\":46863,\"journal\":{\"name\":\"Journal of Choice Modelling\",\"volume\":\"50 \",\"pages\":\"Article 100475\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1755534524000071/pdfft?md5=fbbb03939426530266c915725dd10ee2&pid=1-s2.0-S1755534524000071-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Choice Modelling\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1755534524000071\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Choice Modelling","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755534524000071","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

研究人员通常使用秩序对数回归法(rank-ordered logit regression)分析通过最佳-最差比例(BWS)调查收集到的消费者偏好数据。我们提出的广义秩序对数(GROL)模型可以灵活地对偏好异质性进行建模。GROL 模型和混合秩序对数模型(MROL)都能满足偏好异质性的要求。不过,GROL 还允许将异质性作为人口统计或环境变量的函数来建模。蒙特卡罗实验比较了建议的 GROL 估算与 MROL 规范的准确性和精确性估算。模拟结果表明,当 GROL 或 MROL 是真正的数据生成过程(dgp)时,GROL 模型的表现相对较好。当 MROL 是真正的数据生成过程(dgp)时,GROL 的系数和支付意愿估计值比 MROL 更精确、更准确。我们推测,GROL 估算值精度的提高是由于增加了对不同异质性来源建模的灵活性。实证应用分析了一项关于消费者对生物基材料制成的一次性餐饮具(SUEW)产品偏好的 BWS 调查。调查结果表明,消费者最看重产品的可降解性和使用非塑料材料制造一次性餐饮具。消费者还看重产品的快速降解性和使用非塑料材料制作餐盘。受访者的关注度也会影响不同属性的支付意愿(WTP)估计值。结果表明,细心的受访者比不细心的受访者对可生物降解的 SUEW 的支付意愿高出约 3 美元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bayesian generalized rank ordered logit model

Using rank-ordered logit regression, researchers typically analyze consumer preference data collected with Best-Worst Scaling (BWS) surveys. We propose a generalized rank-ordered logit (GROL) model that allows flexibility in modeling preference heterogeneity. The GROL and mixed rank-ordered logit model (MROL) accommodate preference heterogeneity. However, the GROL also allows one to model heterogeneity as a function of demographic or environmental variables. A Monte Carlo experiment compares the estimates of accuracy and precision of the proposed GROL estimation with the MROL specification. Simulation results suggest that the GROL model performs comparatively well when the GROL or the MROL is the true data-generating process (dgp). Coefficient and willingness-to-pay estimates of the GROL are more precise and accurate compared to the MROL when the MROL is the true dgp. We surmise that the increased precision of the GROL estimator arises from the added flexibility for modeling different sources of heterogeneity. An empirical application analyzes a BWS survey on consumer preferences for single-use eating-ware (SUEW) products made from biobased materials. Findings suggest that consumers value most product degradability and using non-plastic materials to fabricate SUEW. Consumers also valued the rapidity of product degradability and using non-plastic materials to make SUEW plates. Respondent attentiveness also affected willingness-to-pay (WTP) estimates across attributes. Results suggest attentive respondents were about $3.00 more WTP for biodegradable SUEW than inattentive respondents.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
12.50%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信