基于生物材料的神经变性新策略:最新进展与未来展望》。

Dilpreet Singh, Sanjay Nagdev
{"title":"基于生物材料的神经变性新策略:最新进展与未来展望》。","authors":"Dilpreet Singh, Sanjay Nagdev","doi":"10.2174/0115672018275382231215063052","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, pose significant challenges for effective treatment due to the complex nature of the central nervous system and the limited delivery of therapeutic agents to the brain. Biomaterial-based drug delivery systems offer promising strategies to overcome these challenges and improve therapeutic outcomes. These systems utilize various biomaterials, such as nanoparticles, hydrogels, and implants, to deliver drugs, genes, or cells to the affected regions of the brain. They provide advantages such as targeted delivery, controlled release, and protection of therapeutic agents. This review examines the role of biomaterials in drug delivery for neurodegeneration, discussing different biomaterialbased approaches, including surface modification, encapsulation, and functionalization techniques. Furthermore, it explores the challenges, future perspectives, and potential impact of biomaterialbased drug delivery systems in the field of neurodegenerative diseases.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Biomaterials Based Strategies for Neurodegeneration: Recent Advancements and Future Prospects.\",\"authors\":\"Dilpreet Singh, Sanjay Nagdev\",\"doi\":\"10.2174/0115672018275382231215063052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, pose significant challenges for effective treatment due to the complex nature of the central nervous system and the limited delivery of therapeutic agents to the brain. Biomaterial-based drug delivery systems offer promising strategies to overcome these challenges and improve therapeutic outcomes. These systems utilize various biomaterials, such as nanoparticles, hydrogels, and implants, to deliver drugs, genes, or cells to the affected regions of the brain. They provide advantages such as targeted delivery, controlled release, and protection of therapeutic agents. This review examines the role of biomaterials in drug delivery for neurodegeneration, discussing different biomaterialbased approaches, including surface modification, encapsulation, and functionalization techniques. Furthermore, it explores the challenges, future perspectives, and potential impact of biomaterialbased drug delivery systems in the field of neurodegenerative diseases.</p>\",\"PeriodicalId\":94287,\"journal\":{\"name\":\"Current drug delivery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current drug delivery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0115672018275382231215063052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115672018275382231215063052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

神经退行性疾病,包括阿尔茨海默氏症、帕金森氏症和亨廷顿氏症,由于中枢神经系统的复杂性和向大脑输送治疗药物的局限性,给有效治疗带来了巨大挑战。基于生物材料的给药系统为克服这些挑战和改善治疗效果提供了前景广阔的策略。这些系统利用各种生物材料,如纳米颗粒、水凝胶和植入物,将药物、基因或细胞输送到大脑的受影响区域。它们具有靶向递送、控制释放和保护治疗剂等优势。本综述探讨了生物材料在神经变性药物递送中的作用,讨论了基于生物材料的不同方法,包括表面修饰、封装和功能化技术。此外,它还探讨了基于生物材料的给药系统在神经退行性疾病领域面临的挑战、未来前景和潜在影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Biomaterials Based Strategies for Neurodegeneration: Recent Advancements and Future Prospects.

Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, pose significant challenges for effective treatment due to the complex nature of the central nervous system and the limited delivery of therapeutic agents to the brain. Biomaterial-based drug delivery systems offer promising strategies to overcome these challenges and improve therapeutic outcomes. These systems utilize various biomaterials, such as nanoparticles, hydrogels, and implants, to deliver drugs, genes, or cells to the affected regions of the brain. They provide advantages such as targeted delivery, controlled release, and protection of therapeutic agents. This review examines the role of biomaterials in drug delivery for neurodegeneration, discussing different biomaterialbased approaches, including surface modification, encapsulation, and functionalization techniques. Furthermore, it explores the challenges, future perspectives, and potential impact of biomaterialbased drug delivery systems in the field of neurodegenerative diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信