Huang Linhuan, Cai Danlei, He Zhiming, Kong Shu, Chen Jiayi, Peng Jiayi, Su Chuqi, Yang Yinghong, Wang Ding, Xie Yingjun, Luo Yanmin
{"title":"使用高分辨率 SNP 阵列检测先天性心脏缺陷。","authors":"Huang Linhuan, Cai Danlei, He Zhiming, Kong Shu, Chen Jiayi, Peng Jiayi, Su Chuqi, Yang Yinghong, Wang Ding, Xie Yingjun, Luo Yanmin","doi":"10.1080/14767058.2024.2301831","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Copy number variations (CNVs) detected by high-resolution single nucleotide polymorphism microarrays (SNP arrays) have been associated with congenital heart defects (CHDs). The genetic mechanism underlying the development of CHDs remains unclear.</p><p><strong>Methods: </strong>High-resolution SNP arrays were used to detect CNVs and traditional chromosomal analyses, respectively, were carried out on 60 and 249 fetuses from gestational 12-37 weeks old, having isolated or complex CHDs that were diagnosed using prenatal ultrasound.</p><p><strong>Results: </strong>Twenty of the 60 fetuses (33.5%) had abnormalities, of which 23 CNVs (12 pathogenic, five probable pathogenic and six of undetermined significance) were detected by SNP arrays, and two distinct CNVs were present in three of these fetuses. In addition, in 39 patients with isolated congenital heart disease who had normal karyotypes, abnormal CNVs were present in 28.2% (11/39), and in patients with complex coronary artery disease, 19.0% (4/21) had abnormal karyotypes and 42.9% (9/21) had abnormal CNVs. In patients with complex coronary artery disease, 19.0% (4/21) had abnormal karyotypes and 42.9% (9/21) had abnormal CNVs.</p><p><strong>Conclusions: </strong>In conclusion, genome-wide high-resolution SNP array can improve the diagnostic rate and uncover additional pathogenic CNVs. The submicroscopic deletions and duplications of Online Mendelian Inheritance in Man (OMIM) genes found in this study have haploinsufficient (deletion) or triplosensitive (duplication) traits, which further clarify the etiology and inheritance of CHDs.</p>","PeriodicalId":50146,"journal":{"name":"Journal of Maternal-Fetal & Neonatal Medicine","volume":"37 1","pages":"2301831"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The use of high-resolution SNP arrays to detect congenital cardiac defects.\",\"authors\":\"Huang Linhuan, Cai Danlei, He Zhiming, Kong Shu, Chen Jiayi, Peng Jiayi, Su Chuqi, Yang Yinghong, Wang Ding, Xie Yingjun, Luo Yanmin\",\"doi\":\"10.1080/14767058.2024.2301831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Copy number variations (CNVs) detected by high-resolution single nucleotide polymorphism microarrays (SNP arrays) have been associated with congenital heart defects (CHDs). The genetic mechanism underlying the development of CHDs remains unclear.</p><p><strong>Methods: </strong>High-resolution SNP arrays were used to detect CNVs and traditional chromosomal analyses, respectively, were carried out on 60 and 249 fetuses from gestational 12-37 weeks old, having isolated or complex CHDs that were diagnosed using prenatal ultrasound.</p><p><strong>Results: </strong>Twenty of the 60 fetuses (33.5%) had abnormalities, of which 23 CNVs (12 pathogenic, five probable pathogenic and six of undetermined significance) were detected by SNP arrays, and two distinct CNVs were present in three of these fetuses. In addition, in 39 patients with isolated congenital heart disease who had normal karyotypes, abnormal CNVs were present in 28.2% (11/39), and in patients with complex coronary artery disease, 19.0% (4/21) had abnormal karyotypes and 42.9% (9/21) had abnormal CNVs. In patients with complex coronary artery disease, 19.0% (4/21) had abnormal karyotypes and 42.9% (9/21) had abnormal CNVs.</p><p><strong>Conclusions: </strong>In conclusion, genome-wide high-resolution SNP array can improve the diagnostic rate and uncover additional pathogenic CNVs. The submicroscopic deletions and duplications of Online Mendelian Inheritance in Man (OMIM) genes found in this study have haploinsufficient (deletion) or triplosensitive (duplication) traits, which further clarify the etiology and inheritance of CHDs.</p>\",\"PeriodicalId\":50146,\"journal\":{\"name\":\"Journal of Maternal-Fetal & Neonatal Medicine\",\"volume\":\"37 1\",\"pages\":\"2301831\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Maternal-Fetal & Neonatal Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/14767058.2024.2301831\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"OBSTETRICS & GYNECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Maternal-Fetal & Neonatal Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14767058.2024.2301831","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
The use of high-resolution SNP arrays to detect congenital cardiac defects.
Objective: Copy number variations (CNVs) detected by high-resolution single nucleotide polymorphism microarrays (SNP arrays) have been associated with congenital heart defects (CHDs). The genetic mechanism underlying the development of CHDs remains unclear.
Methods: High-resolution SNP arrays were used to detect CNVs and traditional chromosomal analyses, respectively, were carried out on 60 and 249 fetuses from gestational 12-37 weeks old, having isolated or complex CHDs that were diagnosed using prenatal ultrasound.
Results: Twenty of the 60 fetuses (33.5%) had abnormalities, of which 23 CNVs (12 pathogenic, five probable pathogenic and six of undetermined significance) were detected by SNP arrays, and two distinct CNVs were present in three of these fetuses. In addition, in 39 patients with isolated congenital heart disease who had normal karyotypes, abnormal CNVs were present in 28.2% (11/39), and in patients with complex coronary artery disease, 19.0% (4/21) had abnormal karyotypes and 42.9% (9/21) had abnormal CNVs. In patients with complex coronary artery disease, 19.0% (4/21) had abnormal karyotypes and 42.9% (9/21) had abnormal CNVs.
Conclusions: In conclusion, genome-wide high-resolution SNP array can improve the diagnostic rate and uncover additional pathogenic CNVs. The submicroscopic deletions and duplications of Online Mendelian Inheritance in Man (OMIM) genes found in this study have haploinsufficient (deletion) or triplosensitive (duplication) traits, which further clarify the etiology and inheritance of CHDs.
期刊介绍:
The official journal of The European Association of Perinatal Medicine, The Federation of Asia and Oceania Perinatal Societies and The International Society of Perinatal Obstetricians. The journal publishes a wide range of peer-reviewed research on the obstetric, medical, genetic, mental health and surgical complications of pregnancy and their effects on the mother, fetus and neonate. Research on audit, evaluation and clinical care in maternal-fetal and perinatal medicine is also featured.