{"title":"了解三聚配体门控离子通道中细胞内结构域的门控和功能作用的最新进展。","authors":"Yan Lu, Yiyu Lin, Jin Wang","doi":"10.3724/zdxbyxb-2023-0472","DOIUrl":null,"url":null,"abstract":"<p><p>Ligand-gated ion channels are a large category of essential ion channels, modulating their state by binding to specific ligands to allow ions to pass through the cell membrane. Purinergic ligand-gated ion channel receptors (P2XRs) and acid-sensitive ion channels (ASICs) are representative members of trimeric ligand-gated ion channel. Recent studies have shown that structural differences in the intracellular domain of P2XRs may determine the desensitization process. The lateral fenestrations of P2XRs potentially serve as a pathway for ion conductance and play a decisive role in ion selectivity. Phosphorylation of numerous amino acid residues in the P2XRs are involved in regulating the activity of ion channels. Additionally, the P2XRs interact with other ligand-gated ion channels including <i>N</i>-methyl-<i>D</i>-aspartate receptors, γ-aminobutyric acid receptors, 5-hydroxytryptamin receptors and nicotinic acetylcholine receptors, mediating physiological processes such as synaptic plasticity. Conformational changes in the intracellular domain of the ASICs expose binding sites of intracellular signal partners, facilitating metabolic signal transduction. Amino acids such as Val16, Ser17, Ile18, Gln19 and Ala20 in the ASICs participate in channel opening and membrane expression. ASICs can also bind to intracellular proteins, such as CIPP and p11, to regulate channel function. Many phosphorylation sites at the C-terminus and N-terminus of ASICs are involved in the regulation of receptors. Furthermore, ASICs are involved in various physiological and pathophysiological processes, which include pain, ischemic stroke, psychiatric disorders, and neurodegenerative disease. In this article, we review the roles of the intracellular domains of these trimeric ligand-gated ion channels in channel gating as well as their physiological and pathological functions, in order to provide new insights into the discovery of related drugs.</p>","PeriodicalId":24007,"journal":{"name":"Zhejiang da xue xue bao. Yi xue ban = Journal of Zhejiang University. Medical sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057991/pdf/","citationCount":"0","resultStr":"{\"title\":\"Progress on functions of intracellular domain <b>of</b> trimeric ligand-gated ion channels.\",\"authors\":\"Yan Lu, Yiyu Lin, Jin Wang\",\"doi\":\"10.3724/zdxbyxb-2023-0472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ligand-gated ion channels are a large category of essential ion channels, modulating their state by binding to specific ligands to allow ions to pass through the cell membrane. Purinergic ligand-gated ion channel receptors (P2XRs) and acid-sensitive ion channels (ASICs) are representative members of trimeric ligand-gated ion channel. Recent studies have shown that structural differences in the intracellular domain of P2XRs may determine the desensitization process. The lateral fenestrations of P2XRs potentially serve as a pathway for ion conductance and play a decisive role in ion selectivity. Phosphorylation of numerous amino acid residues in the P2XRs are involved in regulating the activity of ion channels. Additionally, the P2XRs interact with other ligand-gated ion channels including <i>N</i>-methyl-<i>D</i>-aspartate receptors, γ-aminobutyric acid receptors, 5-hydroxytryptamin receptors and nicotinic acetylcholine receptors, mediating physiological processes such as synaptic plasticity. Conformational changes in the intracellular domain of the ASICs expose binding sites of intracellular signal partners, facilitating metabolic signal transduction. Amino acids such as Val16, Ser17, Ile18, Gln19 and Ala20 in the ASICs participate in channel opening and membrane expression. ASICs can also bind to intracellular proteins, such as CIPP and p11, to regulate channel function. Many phosphorylation sites at the C-terminus and N-terminus of ASICs are involved in the regulation of receptors. Furthermore, ASICs are involved in various physiological and pathophysiological processes, which include pain, ischemic stroke, psychiatric disorders, and neurodegenerative disease. In this article, we review the roles of the intracellular domains of these trimeric ligand-gated ion channels in channel gating as well as their physiological and pathological functions, in order to provide new insights into the discovery of related drugs.</p>\",\"PeriodicalId\":24007,\"journal\":{\"name\":\"Zhejiang da xue xue bao. Yi xue ban = Journal of Zhejiang University. Medical sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057991/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zhejiang da xue xue bao. Yi xue ban = Journal of Zhejiang University. Medical sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3724/zdxbyxb-2023-0472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhejiang da xue xue bao. Yi xue ban = Journal of Zhejiang University. Medical sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3724/zdxbyxb-2023-0472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
摘要
配体门控离子通道是一大类重要的离子通道,其超家族成员可通过与特定配体结合来调节自身状态,从而允许特定离子通过细胞膜。嘌呤配体门控离子通道(P2X)和ASIC(酸敏感离子通道)是三聚配体门控离子通道的代表成员。最新研究表明,P2X 受体(P2XR)胞内结构域的结构差异可能决定了脱敏过程。P2XR 的侧向栅栏可能是离子传导的途径,并在离子选择性方面起着决定性作用。P2XR 中许多氨基酸残基的磷酸化参与了离子通道活性的调节。此外,P2XR 还与 NMDA 受体、GABA 受体、5-HT3 受体和 nACh 受体等其他配体门控离子通道相互作用,介导突触可塑性等生理过程。ASIC 细胞内结构域的构象变化暴露了细胞内信号伙伴的结合位点,促进了代谢信号转导。ASIC 中的 Val16、Ser17、Ile18、Gln19 和 Ala20 等氨基酸参与通道开放和膜表达。ASIC 还能与 CIPP 和 p11 等细胞内蛋白结合,调节通道功能。ASIC 的 C 端和 N 端有许多磷酸化位点参与受体的调控。此外,ASIC 还参与各种生理和病理生理过程,包括疼痛、缺血性中风、精神疾病和神经退行性疾病。本文综述了这些三聚配体门控离子通道的胞内结构域在通道门控中的作用及其生理和病理功能,以期为靶向它们的药物发现提供新的见解。
Progress on functions of intracellular domain of trimeric ligand-gated ion channels.
Ligand-gated ion channels are a large category of essential ion channels, modulating their state by binding to specific ligands to allow ions to pass through the cell membrane. Purinergic ligand-gated ion channel receptors (P2XRs) and acid-sensitive ion channels (ASICs) are representative members of trimeric ligand-gated ion channel. Recent studies have shown that structural differences in the intracellular domain of P2XRs may determine the desensitization process. The lateral fenestrations of P2XRs potentially serve as a pathway for ion conductance and play a decisive role in ion selectivity. Phosphorylation of numerous amino acid residues in the P2XRs are involved in regulating the activity of ion channels. Additionally, the P2XRs interact with other ligand-gated ion channels including N-methyl-D-aspartate receptors, γ-aminobutyric acid receptors, 5-hydroxytryptamin receptors and nicotinic acetylcholine receptors, mediating physiological processes such as synaptic plasticity. Conformational changes in the intracellular domain of the ASICs expose binding sites of intracellular signal partners, facilitating metabolic signal transduction. Amino acids such as Val16, Ser17, Ile18, Gln19 and Ala20 in the ASICs participate in channel opening and membrane expression. ASICs can also bind to intracellular proteins, such as CIPP and p11, to regulate channel function. Many phosphorylation sites at the C-terminus and N-terminus of ASICs are involved in the regulation of receptors. Furthermore, ASICs are involved in various physiological and pathophysiological processes, which include pain, ischemic stroke, psychiatric disorders, and neurodegenerative disease. In this article, we review the roles of the intracellular domains of these trimeric ligand-gated ion channels in channel gating as well as their physiological and pathological functions, in order to provide new insights into the discovery of related drugs.