Wei Zhou, Yanan Cui, Mengyun Chen, Qijun Gao, Kai Bao, Yongzhong Wang, Min Zhang
{"title":"利用重组谷氨酸棒杆菌表达来自葡萄球菌 RLH1 的 β-葡萄糖醛酸酶,通过全细胞转化生产胆红素。","authors":"Wei Zhou, Yanan Cui, Mengyun Chen, Qijun Gao, Kai Bao, Yongzhong Wang, Min Zhang","doi":"10.1007/s10529-024-03468-1","DOIUrl":null,"url":null,"abstract":"<p><p>Bilirubin, a key active ingredient of bezoars with extensive clinical applications in China, is produced through a chemical process. However, this method suffers from inefficiency and adverse environmental impacts. To address this challenge, we present a novel and efficient approach for bilirubin production via whole-cell transformation. In this study, we employed Corynebacterium glutamicum ATCC13032 to express a β-glucuronidase (StGUS), an enzyme from Staphylococcus sp. RLH1 that effectively hydrolyzes conjugated bilirubin to bilirubin. Following the optimization of the biotransformation conditions, a remarkable conversion rate of 79.7% in the generation of bilirubin was obtained at temperate 40 °C, pH 7.0, 1 mM Mg<sup>2+</sup> and 6 mM antioxidant NaHSO<sub>3</sub> after 12 h. These findings hold significant potential for establishing an industrially viable platform for large-scale bilirubin production.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":" ","pages":"223-233"},"PeriodicalIF":2.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Production of bilirubin via whole-cell transformation utilizing recombinant Corynebacterium glutamicum expressing a β-glucuronidase from Staphylococcus sp. RLH1.\",\"authors\":\"Wei Zhou, Yanan Cui, Mengyun Chen, Qijun Gao, Kai Bao, Yongzhong Wang, Min Zhang\",\"doi\":\"10.1007/s10529-024-03468-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bilirubin, a key active ingredient of bezoars with extensive clinical applications in China, is produced through a chemical process. However, this method suffers from inefficiency and adverse environmental impacts. To address this challenge, we present a novel and efficient approach for bilirubin production via whole-cell transformation. In this study, we employed Corynebacterium glutamicum ATCC13032 to express a β-glucuronidase (StGUS), an enzyme from Staphylococcus sp. RLH1 that effectively hydrolyzes conjugated bilirubin to bilirubin. Following the optimization of the biotransformation conditions, a remarkable conversion rate of 79.7% in the generation of bilirubin was obtained at temperate 40 °C, pH 7.0, 1 mM Mg<sup>2+</sup> and 6 mM antioxidant NaHSO<sub>3</sub> after 12 h. These findings hold significant potential for establishing an industrially viable platform for large-scale bilirubin production.</p>\",\"PeriodicalId\":8929,\"journal\":{\"name\":\"Biotechnology Letters\",\"volume\":\" \",\"pages\":\"223-233\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10529-024-03468-1\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-024-03468-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
胆红素是牛黄的主要活性成分,在中国被广泛应用于临床。然而,这种方法存在效率低、对环境影响大等问题。为了应对这一挑战,我们提出了一种通过全细胞转化生产胆红素的新型高效方法。在这项研究中,我们利用谷氨酸棒杆菌(Corynebacterium glutamicum ATCC13032)来表达一种β-葡萄糖醛酸酶(StGUS),这是一种来自葡萄球菌RLH1的酶,能有效地将共轭胆红素水解为胆红素。优化生物转化条件后,在温度为 40 °C、pH 值为 7.0、1 mM Mg2+ 和 6 mM 抗氧化剂 NaHSO3 的条件下,12 小时后生成的胆红素转化率高达 79.7%。
Production of bilirubin via whole-cell transformation utilizing recombinant Corynebacterium glutamicum expressing a β-glucuronidase from Staphylococcus sp. RLH1.
Bilirubin, a key active ingredient of bezoars with extensive clinical applications in China, is produced through a chemical process. However, this method suffers from inefficiency and adverse environmental impacts. To address this challenge, we present a novel and efficient approach for bilirubin production via whole-cell transformation. In this study, we employed Corynebacterium glutamicum ATCC13032 to express a β-glucuronidase (StGUS), an enzyme from Staphylococcus sp. RLH1 that effectively hydrolyzes conjugated bilirubin to bilirubin. Following the optimization of the biotransformation conditions, a remarkable conversion rate of 79.7% in the generation of bilirubin was obtained at temperate 40 °C, pH 7.0, 1 mM Mg2+ and 6 mM antioxidant NaHSO3 after 12 h. These findings hold significant potential for establishing an industrially viable platform for large-scale bilirubin production.
期刊介绍:
Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them.
All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included.
Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields.
The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories.
Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.