{"title":"提高金融时间序列预测准确性的新型基于距离的移动平均模型","authors":"Uğur Ejder , Selma Ayşe Özel","doi":"10.1016/j.bir.2024.01.011","DOIUrl":null,"url":null,"abstract":"<div><p>Time-series forecasting is essential for system analysis. Many traditional studies have paid attention to individual stock-oriented solutions and disregarded general approaches on financial time series or skipped the dynamics of the system and its triggering components. It is difficult to fully adapt to evolving market conditions with stable financial indicators. For this reason, the proposed novel distance-based exponential moving-average (DBEMA) model is dynamically designed to overcome the changing conditions of financial time series. A novel distance-based moving-average feature model can produce an adaptive prediction approach for financial time series. To evaluate the impact of the novel proposed DBEMA features, they are compared to the features selected by recursive feature elimination using classification and regression trees among the financial indicators, using benchmark classification models. To confirm the performance of the proposed novel distance-based moving-average features, the forecasting results of the features are compared using linear regression, bagged trees regressor, Gaussian naive Bayes, k-nearest neighbors, random forests, multilayer perceptron, convolutional neural network, long short-term memory, gated recurrent unit, and relative strength index method benchmark models. The experimental analysis has shown that methods with our proposed novel DBEMA features has better forecasting accuracy with respect to the methods without DBEMA. Therefore, the proposed novel distance-based moving-average methodology designed for financial time-series analysis demonstrates that it guides a new perspective in nonlinear time-series trends.</p></div>","PeriodicalId":46690,"journal":{"name":"Borsa Istanbul Review","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214845024000206/pdfft?md5=40715c2aa74db6ab5d0c60d7a210fe73&pid=1-s2.0-S2214845024000206-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A novel distance-based moving average model for improvement in the predictive accuracy of financial time series\",\"authors\":\"Uğur Ejder , Selma Ayşe Özel\",\"doi\":\"10.1016/j.bir.2024.01.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Time-series forecasting is essential for system analysis. Many traditional studies have paid attention to individual stock-oriented solutions and disregarded general approaches on financial time series or skipped the dynamics of the system and its triggering components. It is difficult to fully adapt to evolving market conditions with stable financial indicators. For this reason, the proposed novel distance-based exponential moving-average (DBEMA) model is dynamically designed to overcome the changing conditions of financial time series. A novel distance-based moving-average feature model can produce an adaptive prediction approach for financial time series. To evaluate the impact of the novel proposed DBEMA features, they are compared to the features selected by recursive feature elimination using classification and regression trees among the financial indicators, using benchmark classification models. To confirm the performance of the proposed novel distance-based moving-average features, the forecasting results of the features are compared using linear regression, bagged trees regressor, Gaussian naive Bayes, k-nearest neighbors, random forests, multilayer perceptron, convolutional neural network, long short-term memory, gated recurrent unit, and relative strength index method benchmark models. The experimental analysis has shown that methods with our proposed novel DBEMA features has better forecasting accuracy with respect to the methods without DBEMA. Therefore, the proposed novel distance-based moving-average methodology designed for financial time-series analysis demonstrates that it guides a new perspective in nonlinear time-series trends.</p></div>\",\"PeriodicalId\":46690,\"journal\":{\"name\":\"Borsa Istanbul Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214845024000206/pdfft?md5=40715c2aa74db6ab5d0c60d7a210fe73&pid=1-s2.0-S2214845024000206-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Borsa Istanbul Review\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214845024000206\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Borsa Istanbul Review","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214845024000206","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
A novel distance-based moving average model for improvement in the predictive accuracy of financial time series
Time-series forecasting is essential for system analysis. Many traditional studies have paid attention to individual stock-oriented solutions and disregarded general approaches on financial time series or skipped the dynamics of the system and its triggering components. It is difficult to fully adapt to evolving market conditions with stable financial indicators. For this reason, the proposed novel distance-based exponential moving-average (DBEMA) model is dynamically designed to overcome the changing conditions of financial time series. A novel distance-based moving-average feature model can produce an adaptive prediction approach for financial time series. To evaluate the impact of the novel proposed DBEMA features, they are compared to the features selected by recursive feature elimination using classification and regression trees among the financial indicators, using benchmark classification models. To confirm the performance of the proposed novel distance-based moving-average features, the forecasting results of the features are compared using linear regression, bagged trees regressor, Gaussian naive Bayes, k-nearest neighbors, random forests, multilayer perceptron, convolutional neural network, long short-term memory, gated recurrent unit, and relative strength index method benchmark models. The experimental analysis has shown that methods with our proposed novel DBEMA features has better forecasting accuracy with respect to the methods without DBEMA. Therefore, the proposed novel distance-based moving-average methodology designed for financial time-series analysis demonstrates that it guides a new perspective in nonlinear time-series trends.
期刊介绍:
Peer Review under the responsibility of Borsa İstanbul Anonim Sirketi. Borsa İstanbul Review provides a scholarly platform for empirical financial studies including but not limited to financial markets and institutions, financial economics, investor behavior, financial centers and market structures, corporate finance, recent economic and financial trends. Micro and macro data applications and comparative studies are welcome. Country coverage includes advanced, emerging and developing economies. In particular, we would like to publish empirical papers with significant policy implications and encourage submissions in the following areas: Research Topics: • Investments and Portfolio Management • Behavioral Finance • Financial Markets and Institutions • Market Microstructure • Islamic Finance • Financial Risk Management • Valuation • Capital Markets Governance • Financial Regulations