{"title":"质子电荷半径和极化能力的最新研究成果","authors":"Haiyan Gao, Jingyi Zhou","doi":"10.1007/s00601-024-01878-5","DOIUrl":null,"url":null,"abstract":"<div><p>The proton charge radius and nucleon electromagnetic polarizabilities are fundamental properties probing the electromagnetic structure of the nucleons. Proton charge radius is directly related to the proton charge distribution and the nucleon electromagnetic polarizabilities characterize the response of the charge/magnetic constituents inside the nucleon to external electromagnetic fields. A precise understanding of these quantities is crucial not only for understanding how quantum chromodynamics (QCD) works in the non-perturbative QCD region but also for bound state quantum electrodynamics (QED) calculations of atomic energy levels. We discuss the experimental approaches employed in the recent decades to determine the proton charge radius and nucleon electromagnetic polarizabilities. We summarize the present status of the proton charge radius puzzle and polarizabilities measurements. Additionally, we provide prospects for various upcoming experiments.\n</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00601-024-01878-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Recent Results on Proton Charge Radius and Polarizabilities\",\"authors\":\"Haiyan Gao, Jingyi Zhou\",\"doi\":\"10.1007/s00601-024-01878-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The proton charge radius and nucleon electromagnetic polarizabilities are fundamental properties probing the electromagnetic structure of the nucleons. Proton charge radius is directly related to the proton charge distribution and the nucleon electromagnetic polarizabilities characterize the response of the charge/magnetic constituents inside the nucleon to external electromagnetic fields. A precise understanding of these quantities is crucial not only for understanding how quantum chromodynamics (QCD) works in the non-perturbative QCD region but also for bound state quantum electrodynamics (QED) calculations of atomic energy levels. We discuss the experimental approaches employed in the recent decades to determine the proton charge radius and nucleon electromagnetic polarizabilities. We summarize the present status of the proton charge radius puzzle and polarizabilities measurements. Additionally, we provide prospects for various upcoming experiments.\\n</p></div>\",\"PeriodicalId\":556,\"journal\":{\"name\":\"Few-Body Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00601-024-01878-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Few-Body Systems\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00601-024-01878-5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Few-Body Systems","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00601-024-01878-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Recent Results on Proton Charge Radius and Polarizabilities
The proton charge radius and nucleon electromagnetic polarizabilities are fundamental properties probing the electromagnetic structure of the nucleons. Proton charge radius is directly related to the proton charge distribution and the nucleon electromagnetic polarizabilities characterize the response of the charge/magnetic constituents inside the nucleon to external electromagnetic fields. A precise understanding of these quantities is crucial not only for understanding how quantum chromodynamics (QCD) works in the non-perturbative QCD region but also for bound state quantum electrodynamics (QED) calculations of atomic energy levels. We discuss the experimental approaches employed in the recent decades to determine the proton charge radius and nucleon electromagnetic polarizabilities. We summarize the present status of the proton charge radius puzzle and polarizabilities measurements. Additionally, we provide prospects for various upcoming experiments.
期刊介绍:
The journal Few-Body Systems presents original research work – experimental, theoretical and computational – investigating the behavior of any classical or quantum system consisting of a small number of well-defined constituent structures. The focus is on the research methods, properties, and results characteristic of few-body systems. Examples of few-body systems range from few-quark states, light nuclear and hadronic systems; few-electron atomic systems and small molecules; and specific systems in condensed matter and surface physics (such as quantum dots and highly correlated trapped systems), up to and including large-scale celestial structures.
Systems for which an equivalent one-body description is available or can be designed, and large systems for which specific many-body methods are needed are outside the scope of the journal.
The journal is devoted to the publication of all aspects of few-body systems research and applications. While concentrating on few-body systems well-suited to rigorous solutions, the journal also encourages interdisciplinary contributions that foster common approaches and insights, introduce and benchmark the use of novel tools (e.g. machine learning) and develop relevant applications (e.g. few-body aspects in quantum technologies).