面板方差分解网络的拓扑结构

IF 6.1 2区 经济学 Q1 BUSINESS, FINANCE
Alessandro Celani , Paola Cerchiello , Paolo Pagnottoni
{"title":"面板方差分解网络的拓扑结构","authors":"Alessandro Celani ,&nbsp;Paola Cerchiello ,&nbsp;Paolo Pagnottoni","doi":"10.1016/j.jfs.2024.101222","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we provide a framework to study the network topology of generalized forecast error variance decomposition (GFEVD) derived from multi-country, multi-variable time series models. Our dynamic variance decomposition network is based on a Bayesian Global Vector Autoregressive (GVAR) model, a suitable macroeconometric method to consider simultaneous multi-level interdependencies across variables. We demonstrate the usefulness of our methodology to analyze the network structure of shock propagation in longitudinal time series and, in particular: (a) the shortest paths of contagion; (b) the clusters of shock transmission; (c) the role of nodes in the risk transmission channels. We illustrate our method through an empirical application to a set of 12 European countries’ Industrial Production, Retail Trade and Economic Sentiment indices over the period 01/2000–11/2021.</p></div>","PeriodicalId":48027,"journal":{"name":"Journal of Financial Stability","volume":"71 ","pages":"Article 101222"},"PeriodicalIF":6.1000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S157230892400007X/pdfft?md5=81d7b248f848b8aabe0b9d1672bfb800&pid=1-s2.0-S157230892400007X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The topological structure of panel variance decomposition networks\",\"authors\":\"Alessandro Celani ,&nbsp;Paola Cerchiello ,&nbsp;Paolo Pagnottoni\",\"doi\":\"10.1016/j.jfs.2024.101222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we provide a framework to study the network topology of generalized forecast error variance decomposition (GFEVD) derived from multi-country, multi-variable time series models. Our dynamic variance decomposition network is based on a Bayesian Global Vector Autoregressive (GVAR) model, a suitable macroeconometric method to consider simultaneous multi-level interdependencies across variables. We demonstrate the usefulness of our methodology to analyze the network structure of shock propagation in longitudinal time series and, in particular: (a) the shortest paths of contagion; (b) the clusters of shock transmission; (c) the role of nodes in the risk transmission channels. We illustrate our method through an empirical application to a set of 12 European countries’ Industrial Production, Retail Trade and Economic Sentiment indices over the period 01/2000–11/2021.</p></div>\",\"PeriodicalId\":48027,\"journal\":{\"name\":\"Journal of Financial Stability\",\"volume\":\"71 \",\"pages\":\"Article 101222\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S157230892400007X/pdfft?md5=81d7b248f848b8aabe0b9d1672bfb800&pid=1-s2.0-S157230892400007X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Financial Stability\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S157230892400007X\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Financial Stability","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157230892400007X","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

本文提供了一个框架,用于研究从多国、多变量时间序列模型中得出的广义预测误差方差分解(GFEVD)的网络拓扑结构。我们的动态方差分解网络基于贝叶斯全局向量自回归(GVAR)模型,这是一种适合考虑变量间多层次同步相互依存关系的宏观计量经济学方法。我们展示了我们的方法在分析纵向时间序列中冲击传播网络结构方面的实用性,尤其是:(a)传染的最短路径;(b)冲击传播的集群;(c)节点在风险传播渠道中的作用。我们通过对 12 个欧洲国家 01/2000-11/2021 年期间的工业生产、零售贸易和经济景气指数的实证应用来说明我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The topological structure of panel variance decomposition networks

In this paper we provide a framework to study the network topology of generalized forecast error variance decomposition (GFEVD) derived from multi-country, multi-variable time series models. Our dynamic variance decomposition network is based on a Bayesian Global Vector Autoregressive (GVAR) model, a suitable macroeconometric method to consider simultaneous multi-level interdependencies across variables. We demonstrate the usefulness of our methodology to analyze the network structure of shock propagation in longitudinal time series and, in particular: (a) the shortest paths of contagion; (b) the clusters of shock transmission; (c) the role of nodes in the risk transmission channels. We illustrate our method through an empirical application to a set of 12 European countries’ Industrial Production, Retail Trade and Economic Sentiment indices over the period 01/2000–11/2021.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
9.30%
发文量
78
审稿时长
34 days
期刊介绍: The Journal of Financial Stability provides an international forum for rigorous theoretical and empirical macro and micro economic and financial analysis of the causes, management, resolution and preventions of financial crises, including banking, securities market, payments and currency crises. The primary focus is on applied research that would be useful in affecting public policy with respect to financial stability. Thus, the Journal seeks to promote interaction among researchers, policy-makers and practitioners to identify potential risks to financial stability and develop means for preventing, mitigating or managing these risks both within and across countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信