使用乙酰丁酸梭菌 ATCC824 的退化菌株从 Eichhornia crassipes 生物质中生产生物氢

IF 3.1 3区 工程技术 Q3 ENERGY & FUELS
Paulina Aguirre, Paola German, Karlo Guerrero
{"title":"使用乙酰丁酸梭菌 ATCC824 的退化菌株从 Eichhornia crassipes 生物质中生产生物氢","authors":"Paulina Aguirre,&nbsp;Paola German,&nbsp;Karlo Guerrero","doi":"10.1007/s12155-024-10723-w","DOIUrl":null,"url":null,"abstract":"<div><p>Degenerate strains of <i>Clostridium acetobutylicum</i> lack the ability to produce solvents and sporulate and remain in a permanent acidogenic state, allowing continuous hydrogen and organic acid production through anaerobic fermentation. <i>Eichhornia crassipes</i>, an invasive aquatic plant, emerges as a promising source of fermentable sugars for hydrogen production via anaerobic fermentation. In this study, a degenerated strain of <i>Clostridium acetobutylicum</i> was isolated and subsequently cultivated in the presence of a hydrolysate solution obtained from the alkaline pre-treatment and enzymatic hydrolysis of <i>Eichhornia crassipes</i>. The hydrolysate was mixed with a defined medium and served the dual purpose of providing essential nutrients and mitigating inhibitors, eliminating the need for an additional detoxification step. A pure defined culture medium served as a control. The extraction methods employed led to the release of low concentrations of inhibitors, reaching 0.1 g/L of furfural and 0.18 g/L of HMF. Kinetic characterization revealed that in the presence of <i>Eichhornia crassipes</i> hydrolysate, the degenerate strain exhibited lower specific growth rates ranging from 0.114 to 0.156 h<sup>−1</sup>, compared with the control medium which ranged from 0.131 to 0.179 h<sup>−1</sup>. This was accompanied by lower yields, ranging from 0.115 to 0.167 g<sub>DCW</sub>/g in the presence of hydrolysate versus 0.178 to 0.190 g<sub>DCW</sub>/g in the control medium, and diminished butyric acid production of 1.318 to 2.932 g/L in the presence of hydrolysate versus 1.749 to 3.471 g/L in control cultures. Despite reduced growth, high biohydrogen volumetric productivity was achieved, reaching 7.3 L/L·d, along with a significant yield of 2.642 mol of hydrogen per mole of glucose consumed. This represents 66.05% of the maximum stoichiometric yield calculated when acetic acid is the sole byproduct. Apparently, the presence of low concentrations of furfural and HMF released during the pre-treatment of <i>Eichhornia crassipes</i> not only negatively affects growth capacity but also diminishes butyric acid production, favoring biohydrogen production.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 3","pages":"1770 - 1783"},"PeriodicalIF":3.1000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biohydrogen production with a degenerated strain of Clostridium acetobutylicum ATCC824 from Eichhornia crassipes biomass\",\"authors\":\"Paulina Aguirre,&nbsp;Paola German,&nbsp;Karlo Guerrero\",\"doi\":\"10.1007/s12155-024-10723-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Degenerate strains of <i>Clostridium acetobutylicum</i> lack the ability to produce solvents and sporulate and remain in a permanent acidogenic state, allowing continuous hydrogen and organic acid production through anaerobic fermentation. <i>Eichhornia crassipes</i>, an invasive aquatic plant, emerges as a promising source of fermentable sugars for hydrogen production via anaerobic fermentation. In this study, a degenerated strain of <i>Clostridium acetobutylicum</i> was isolated and subsequently cultivated in the presence of a hydrolysate solution obtained from the alkaline pre-treatment and enzymatic hydrolysis of <i>Eichhornia crassipes</i>. The hydrolysate was mixed with a defined medium and served the dual purpose of providing essential nutrients and mitigating inhibitors, eliminating the need for an additional detoxification step. A pure defined culture medium served as a control. The extraction methods employed led to the release of low concentrations of inhibitors, reaching 0.1 g/L of furfural and 0.18 g/L of HMF. Kinetic characterization revealed that in the presence of <i>Eichhornia crassipes</i> hydrolysate, the degenerate strain exhibited lower specific growth rates ranging from 0.114 to 0.156 h<sup>−1</sup>, compared with the control medium which ranged from 0.131 to 0.179 h<sup>−1</sup>. This was accompanied by lower yields, ranging from 0.115 to 0.167 g<sub>DCW</sub>/g in the presence of hydrolysate versus 0.178 to 0.190 g<sub>DCW</sub>/g in the control medium, and diminished butyric acid production of 1.318 to 2.932 g/L in the presence of hydrolysate versus 1.749 to 3.471 g/L in control cultures. Despite reduced growth, high biohydrogen volumetric productivity was achieved, reaching 7.3 L/L·d, along with a significant yield of 2.642 mol of hydrogen per mole of glucose consumed. This represents 66.05% of the maximum stoichiometric yield calculated when acetic acid is the sole byproduct. Apparently, the presence of low concentrations of furfural and HMF released during the pre-treatment of <i>Eichhornia crassipes</i> not only negatively affects growth capacity but also diminishes butyric acid production, favoring biohydrogen production.</p></div>\",\"PeriodicalId\":487,\"journal\":{\"name\":\"BioEnergy Research\",\"volume\":\"17 3\",\"pages\":\"1770 - 1783\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioEnergy Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12155-024-10723-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioEnergy Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12155-024-10723-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

乙酰丁酸梭菌的退化菌株缺乏产生溶剂和孢子的能力,并始终处于产酸状态,因此可以通过厌氧发酵持续产生氢气和有机酸。Eichhornia crassipes 是一种入侵性水生植物,有望成为通过厌氧发酵制氢的可发酵糖来源。在这项研究中,分离出了一株退化的乙酰丁酸梭菌,随后在通过碱性预处理和酶水解 Eichhornia crassipes 获得的水解物溶液中进行培养。水解液与特定培养基混合,具有提供必需营养和减少抑制剂的双重作用,无需额外的解毒步骤。纯净的特定培养基作为对照。所采用的萃取方法释放出的抑制剂浓度较低,糠醛和 HMF 的浓度分别为 0.1 克/升和 0.18 克/升。动力学特性分析表明,与对照培养基(0.131-0.179 h-1)相比,退化菌株在 Eichhornia crassipes 水解产物的存在下表现出较低的特定生长率(0.114-0.156 h-1)。同时,产量也较低,在有水解物的情况下为 0.115 至 0.167 gDCW/g,而在对照培养基中为 0.178 至 0.190 gDCW/g;丁酸产量在有水解物的情况下为 1.318 至 2.932 g/L,而在对照培养基中为 1.749 至 3.471 g/L。尽管生长速度降低,但生物氢的体积生产率仍然很高,达到 7.3 升/升-日,每摩尔葡萄糖消耗 2.642 摩尔氢,产量可观。这相当于以醋酸为唯一副产品时计算出的最大化学计量产量的 66.05%。显然,在预处理 Eichhornia crassipes 期间释放的低浓度糠醛和 HMF 不仅会对其生长能力产生负面影响,还会减少丁酸的产生,从而有利于生物氢的产生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Biohydrogen production with a degenerated strain of Clostridium acetobutylicum ATCC824 from Eichhornia crassipes biomass

Biohydrogen production with a degenerated strain of Clostridium acetobutylicum ATCC824 from Eichhornia crassipes biomass

Degenerate strains of Clostridium acetobutylicum lack the ability to produce solvents and sporulate and remain in a permanent acidogenic state, allowing continuous hydrogen and organic acid production through anaerobic fermentation. Eichhornia crassipes, an invasive aquatic plant, emerges as a promising source of fermentable sugars for hydrogen production via anaerobic fermentation. In this study, a degenerated strain of Clostridium acetobutylicum was isolated and subsequently cultivated in the presence of a hydrolysate solution obtained from the alkaline pre-treatment and enzymatic hydrolysis of Eichhornia crassipes. The hydrolysate was mixed with a defined medium and served the dual purpose of providing essential nutrients and mitigating inhibitors, eliminating the need for an additional detoxification step. A pure defined culture medium served as a control. The extraction methods employed led to the release of low concentrations of inhibitors, reaching 0.1 g/L of furfural and 0.18 g/L of HMF. Kinetic characterization revealed that in the presence of Eichhornia crassipes hydrolysate, the degenerate strain exhibited lower specific growth rates ranging from 0.114 to 0.156 h−1, compared with the control medium which ranged from 0.131 to 0.179 h−1. This was accompanied by lower yields, ranging from 0.115 to 0.167 gDCW/g in the presence of hydrolysate versus 0.178 to 0.190 gDCW/g in the control medium, and diminished butyric acid production of 1.318 to 2.932 g/L in the presence of hydrolysate versus 1.749 to 3.471 g/L in control cultures. Despite reduced growth, high biohydrogen volumetric productivity was achieved, reaching 7.3 L/L·d, along with a significant yield of 2.642 mol of hydrogen per mole of glucose consumed. This represents 66.05% of the maximum stoichiometric yield calculated when acetic acid is the sole byproduct. Apparently, the presence of low concentrations of furfural and HMF released during the pre-treatment of Eichhornia crassipes not only negatively affects growth capacity but also diminishes butyric acid production, favoring biohydrogen production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BioEnergy Research
BioEnergy Research ENERGY & FUELS-ENVIRONMENTAL SCIENCES
CiteScore
6.70
自引率
8.30%
发文量
174
审稿时长
3 months
期刊介绍: BioEnergy Research fills a void in the rapidly growing area of feedstock biology research related to biomass, biofuels, and bioenergy. The journal publishes a wide range of articles, including peer-reviewed scientific research, reviews, perspectives and commentary, industry news, and government policy updates. Its coverage brings together a uniquely broad combination of disciplines with a common focus on feedstock biology and science, related to biomass, biofeedstock, and bioenergy production.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信