{"title":"伊本-扎尔卡鲁赫发现月球的年度方程","authors":"S. Mohammad Mozaffari","doi":"10.1007/s00407-023-00323-z","DOIUrl":null,"url":null,"abstract":"<div><p>Ibn al-Zarqālluh (al-Andalus, d. 1100) introduced a new inequality in the longitudinal motion of the Moon into Ptolemy’s lunar model with the amplitude of 24′, which periodically changes in terms of a sine function with the distance in longitude between the mean Moon and the solar apogee as the variable. It can be shown that the discovery had its roots in his examination of the discrepancies between the times of the lunar eclipses he obtained from the data of his eclipse observations over a 37-year period in the latter part of the eleventh century and the predictions made on the basis of the lunar theories in the <i>Mumta</i><span>\\(\\textit{\\d{h}}\\)</span><i>an zīj</i> (Baghdad, <i>ca.</i> 830) and al-Battānī’s <i>zīj</i> (Raqqa, d. 929), which were available to him at the time. What Ibn al-Zarqālluh found is, in fact, a special case of the annual equation of the Moon, which is applicable in the oppositions and, thus, in the lunar eclipses. The inequality was discovered independently by Tycho Brahe (d. 1601) and Johannes Kepler (d. 1630). As Ibn Yūnus (d. 1009) reports in his <span>\\(\\textit{\\d{H}}\\)</span><i>ākimī zīj</i>, Ibn al-Zarqālluh’s medieval Middle Eastern predecessors, the Persian astronomers Māhānī (d. <i>ca.</i> 880) and Nayrīzī (d. 922) as well as ‘Alī b. Amājūr (<i>fl. ca.</i> 920), were already acquainted with the problem of the eclipse timing errors, but it had remained unresolved until Ibn Yūnus provided a provisional, and incorrect, solution by reducing the size of the lunar epicycle. As we argue, the diverse ways to tackle the same problem stem from two different methodologies in astronomical reasoning in the traditions developed separately in the Eastern and Western regions of the medieval Islamic domain.</p></div>","PeriodicalId":50982,"journal":{"name":"Archive for History of Exact Sciences","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ibn al-Zarqālluh’s discovery of the annual equation of the Moon\",\"authors\":\"S. Mohammad Mozaffari\",\"doi\":\"10.1007/s00407-023-00323-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ibn al-Zarqālluh (al-Andalus, d. 1100) introduced a new inequality in the longitudinal motion of the Moon into Ptolemy’s lunar model with the amplitude of 24′, which periodically changes in terms of a sine function with the distance in longitude between the mean Moon and the solar apogee as the variable. It can be shown that the discovery had its roots in his examination of the discrepancies between the times of the lunar eclipses he obtained from the data of his eclipse observations over a 37-year period in the latter part of the eleventh century and the predictions made on the basis of the lunar theories in the <i>Mumta</i><span>\\\\(\\\\textit{\\\\d{h}}\\\\)</span><i>an zīj</i> (Baghdad, <i>ca.</i> 830) and al-Battānī’s <i>zīj</i> (Raqqa, d. 929), which were available to him at the time. What Ibn al-Zarqālluh found is, in fact, a special case of the annual equation of the Moon, which is applicable in the oppositions and, thus, in the lunar eclipses. The inequality was discovered independently by Tycho Brahe (d. 1601) and Johannes Kepler (d. 1630). As Ibn Yūnus (d. 1009) reports in his <span>\\\\(\\\\textit{\\\\d{H}}\\\\)</span><i>ākimī zīj</i>, Ibn al-Zarqālluh’s medieval Middle Eastern predecessors, the Persian astronomers Māhānī (d. <i>ca.</i> 880) and Nayrīzī (d. 922) as well as ‘Alī b. Amājūr (<i>fl. ca.</i> 920), were already acquainted with the problem of the eclipse timing errors, but it had remained unresolved until Ibn Yūnus provided a provisional, and incorrect, solution by reducing the size of the lunar epicycle. As we argue, the diverse ways to tackle the same problem stem from two different methodologies in astronomical reasoning in the traditions developed separately in the Eastern and Western regions of the medieval Islamic domain.</p></div>\",\"PeriodicalId\":50982,\"journal\":{\"name\":\"Archive for History of Exact Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for History of Exact Sciences\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00407-023-00323-z\",\"RegionNum\":2,\"RegionCategory\":\"哲学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HISTORY & PHILOSOPHY OF SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for History of Exact Sciences","FirstCategoryId":"98","ListUrlMain":"https://link.springer.com/article/10.1007/s00407-023-00323-z","RegionNum":2,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
Ibn al-Zarqālluh’s discovery of the annual equation of the Moon
Ibn al-Zarqālluh (al-Andalus, d. 1100) introduced a new inequality in the longitudinal motion of the Moon into Ptolemy’s lunar model with the amplitude of 24′, which periodically changes in terms of a sine function with the distance in longitude between the mean Moon and the solar apogee as the variable. It can be shown that the discovery had its roots in his examination of the discrepancies between the times of the lunar eclipses he obtained from the data of his eclipse observations over a 37-year period in the latter part of the eleventh century and the predictions made on the basis of the lunar theories in the Mumta\(\textit{\d{h}}\)an zīj (Baghdad, ca. 830) and al-Battānī’s zīj (Raqqa, d. 929), which were available to him at the time. What Ibn al-Zarqālluh found is, in fact, a special case of the annual equation of the Moon, which is applicable in the oppositions and, thus, in the lunar eclipses. The inequality was discovered independently by Tycho Brahe (d. 1601) and Johannes Kepler (d. 1630). As Ibn Yūnus (d. 1009) reports in his \(\textit{\d{H}}\)ākimī zīj, Ibn al-Zarqālluh’s medieval Middle Eastern predecessors, the Persian astronomers Māhānī (d. ca. 880) and Nayrīzī (d. 922) as well as ‘Alī b. Amājūr (fl. ca. 920), were already acquainted with the problem of the eclipse timing errors, but it had remained unresolved until Ibn Yūnus provided a provisional, and incorrect, solution by reducing the size of the lunar epicycle. As we argue, the diverse ways to tackle the same problem stem from two different methodologies in astronomical reasoning in the traditions developed separately in the Eastern and Western regions of the medieval Islamic domain.
期刊介绍:
The Archive for History of Exact Sciences casts light upon the conceptual groundwork of the sciences by analyzing the historical course of rigorous quantitative thought and the precise theory of nature in the fields of mathematics, physics, technical chemistry, computer science, astronomy, and the biological sciences, embracing as well their connections to experiment. This journal nourishes historical research meeting the standards of the mathematical sciences. Its aim is to give rapid and full publication to writings of exceptional depth, scope, and permanence.