{"title":"用于转印的印章和油墨之间可调节的界面粘附力","authors":"Yiheng Li, Feilong Zhang, Shutao Wang","doi":"10.1002/idm2.12139","DOIUrl":null,"url":null,"abstract":"<p>As an emerging processing technology, transfer printing enables the assembly of functional material arrays (called inks) on various substrates with micro/nanoscale resolution and has been widely used in the fabrication of flexible electronics and display systems. The critical steps in transfer printing are the ink pick-up and printing processes governed by the switching of adhesion states at the stamp/ink interface. In this review, we first introduce the history of transfer printing in terms of the transfer methods, transferred materials, and applications. Then, the fundamental characteristics of the transfer printing system and typical strategies for regulating the stamp/ink interfacial adhesion strength are summarized and exemplified. Finally, future challenges and opportunities for developing the novel stamps, inks, and substrates with intelligent adhesion capability are discussed, aiming to inspire the innovation in the design of transfer printing systems.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 1","pages":"29-53"},"PeriodicalIF":24.5000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12139","citationCount":"0","resultStr":"{\"title\":\"Regulatable interfacial adhesion between stamp and ink for transfer printing\",\"authors\":\"Yiheng Li, Feilong Zhang, Shutao Wang\",\"doi\":\"10.1002/idm2.12139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As an emerging processing technology, transfer printing enables the assembly of functional material arrays (called inks) on various substrates with micro/nanoscale resolution and has been widely used in the fabrication of flexible electronics and display systems. The critical steps in transfer printing are the ink pick-up and printing processes governed by the switching of adhesion states at the stamp/ink interface. In this review, we first introduce the history of transfer printing in terms of the transfer methods, transferred materials, and applications. Then, the fundamental characteristics of the transfer printing system and typical strategies for regulating the stamp/ink interfacial adhesion strength are summarized and exemplified. Finally, future challenges and opportunities for developing the novel stamps, inks, and substrates with intelligent adhesion capability are discussed, aiming to inspire the innovation in the design of transfer printing systems.</p>\",\"PeriodicalId\":100685,\"journal\":{\"name\":\"Interdisciplinary Materials\",\"volume\":\"3 1\",\"pages\":\"29-53\"},\"PeriodicalIF\":24.5000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12139\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/idm2.12139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Materials","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/idm2.12139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Regulatable interfacial adhesion between stamp and ink for transfer printing
As an emerging processing technology, transfer printing enables the assembly of functional material arrays (called inks) on various substrates with micro/nanoscale resolution and has been widely used in the fabrication of flexible electronics and display systems. The critical steps in transfer printing are the ink pick-up and printing processes governed by the switching of adhesion states at the stamp/ink interface. In this review, we first introduce the history of transfer printing in terms of the transfer methods, transferred materials, and applications. Then, the fundamental characteristics of the transfer printing system and typical strategies for regulating the stamp/ink interfacial adhesion strength are summarized and exemplified. Finally, future challenges and opportunities for developing the novel stamps, inks, and substrates with intelligent adhesion capability are discussed, aiming to inspire the innovation in the design of transfer printing systems.