利用深度学习对 CT 图像进行去噪和去模糊:现状与展望

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Yiming Lei;Chuang Niu;Junping Zhang;Ge Wang;Hongming Shan
{"title":"利用深度学习对 CT 图像进行去噪和去模糊:现状与展望","authors":"Yiming Lei;Chuang Niu;Junping Zhang;Ge Wang;Hongming Shan","doi":"10.1109/TRPMS.2023.3341903","DOIUrl":null,"url":null,"abstract":"This article reviews the deep learning methods for computed tomography image denoising and deblurring separately and simultaneously. Then, we discuss promising directions in this field, such as a combination with large-scale pretrained models and large language models. Currently, deep learning is revolutionizing medical imaging in a data-driven manner. With rapidly evolving learning paradigms, related algorithms and models are making rapid progress toward clinical applications.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CT Image Denoising and Deblurring With Deep Learning: Current Status and Perspectives\",\"authors\":\"Yiming Lei;Chuang Niu;Junping Zhang;Ge Wang;Hongming Shan\",\"doi\":\"10.1109/TRPMS.2023.3341903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article reviews the deep learning methods for computed tomography image denoising and deblurring separately and simultaneously. Then, we discuss promising directions in this field, such as a combination with large-scale pretrained models and large language models. Currently, deep learning is revolutionizing medical imaging in a data-driven manner. With rapidly evolving learning paradigms, related algorithms and models are making rapid progress toward clinical applications.\",\"PeriodicalId\":46807,\"journal\":{\"name\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10354073/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10354073/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

本文回顾了分别和同时用于计算机断层扫描图像去噪和去模糊的深度学习方法。然后,我们讨论了该领域的发展方向,如与大规模预训练模型和大型语言模型相结合。目前,深度学习正在以数据驱动的方式彻底改变医学成像。随着学习范式的快速发展,相关算法和模型在临床应用方面也取得了突飞猛进的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CT Image Denoising and Deblurring With Deep Learning: Current Status and Perspectives
This article reviews the deep learning methods for computed tomography image denoising and deblurring separately and simultaneously. Then, we discuss promising directions in this field, such as a combination with large-scale pretrained models and large language models. Currently, deep learning is revolutionizing medical imaging in a data-driven manner. With rapidly evolving learning paradigms, related algorithms and models are making rapid progress toward clinical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信